This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels o...This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.展开更多
This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a...This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.展开更多
A digital image encryption scheme using chaotic map lattices has been proposed recently. In this paper, two fatal flaws of the cryptosystem are pointed out. According to these two drawbacks, cryptanalysts could recove...A digital image encryption scheme using chaotic map lattices has been proposed recently. In this paper, two fatal flaws of the cryptosystem are pointed out. According to these two drawbacks, cryptanalysts could recover the plaintext by applying the chosen plaintext attack. Therefore, the proposed cryptosystem is not secure enough to be used in the image transmission system. Experimental results show the feasibility of the attack. As a result, we make some improvements to the encryption scheme, which can completely resist our chosen plaintext attack.展开更多
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif...We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.展开更多
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami...Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.展开更多
A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach ...A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states.The method,based on the Lyapunov stability theory and the pole placement technique,presents some useful features:(i) it enables synchronization to be achieved for both cases of n 〈 m and n 〉 m;(ii) it is rigorous,being based on theorems;(iii) it can be readily applied to any chaotic(hyperchaotic) maps defined to date.Finally,the capability of the approach is illustrated by synchronization examples between the two-dimensional H′enon map(as the drive system) and the three-dimensional hyperchaotic Wang map(as the response system),and the three-dimensional H′enon-like map(as the drive system) and the two-dimensional Lorenz discrete-time system(as the response system).展开更多
In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, su...In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password- based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well- organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency.展开更多
Three-party password-based key agreement protocols allow two users to authenticate each other via a public channel and establish a session key with the aid of a trusted server. Recently, Farash et al. [Farash M S, Att...Three-party password-based key agreement protocols allow two users to authenticate each other via a public channel and establish a session key with the aid of a trusted server. Recently, Farash et al. [Farash M S, Attari M A 2014 "An efficient and provably secure three-party password-based authenticated key exchange protocol based on Chebyshev chaotic maps", Nonlinear Dynamics 77(7): 399-411] proposed a three-party key agreement protocol by using the extended chaotic maps. They claimed that their protocol could achieve strong security. In the present paper, we analyze Farash et al.'s protocol and point out that this protocol is vulnerable to off-line password guessing attack and suffers communication burden. To handle the issue, we propose an efficient three-party password-based key agreement protocol using extended chaotic maps, which uses neither symmetric cryptosystems nor the server's public key. Compared with the relevant schemes, our protocol provides better performance in terms of computation and communication. Therefore, it is suitable for practical applications.展开更多
To ensure the safe transmission of image information in communication, and improve the security performance of image encryption algorithm, we proposed a color image encryption algorithm with higher security based on c...To ensure the safe transmission of image information in communication, and improve the security performance of image encryption algorithm, we proposed a color image encryption algorithm with higher security based on chaotic system. Firstly, the 2-dimensional Cubic ICMIC modulation map(2D-CIMM) is designed, which has simple form, easy to construct, and high Spectral Entropy(SE) complexity. Secondly, the hash values of the original image are used to update the initial values of the 2D-CIMM map in real time, which increases the sensitivity of the image encryption algorithm to the plaintext and improves the finite precision effect. Finally, the permutation and diffusion processes of the encryption algorithm based on bit-level are performed. In addition, simulation and performance analysis show that the proposed algorithm has higher security.展开更多
Taking full advantage of the randomicity of chaotic system and its extreme sensitivity to the initial value, a new chaotic fragile watermarking algorithm is proposed. In the algorithm, the location key is looked as a ...Taking full advantage of the randomicity of chaotic system and its extreme sensitivity to the initial value, a new chaotic fragile watermarking algorithm is proposed. In the algorithm, the location key is looked as a logistic chaotic initial value for iteration to create a location matrix. According to this location matrix, a mapping image is generated and the embedding location of watermarking in image blocks is identified. Then, the watermarking sequence, which is related with the mapping image blocks and generated by H6non chaotic map, is embedded into the least significant bit ( LSB ) of the corresponding location in each block. Since the image content and watermarking are staggered, the algorithm has a higher security. Simulation results showed that the algorithm can detect and locate the tamper in watermarked images with an accuracy of 2 × 2 block pixels. At the same time, the watermarking images has good invisibility, and the original image is not required when extracting watermarking.展开更多
A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then...A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency.展开更多
Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal ratel...Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, its degree is randomly chosen according to a predetermined degree distribution, and its neighbours used to generate that encoding symbol are chosen uniformly at random. Practical implementation of LT codes usually realizes the randomness through pseudo-randomness number generator like linear congruential method. This paper applies the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. It is shown that the implemented LT codes based on chaos perform better than the LT codes implemented by the traditional pseudo-randomness number generator.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 61001099 and 10971120)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200444)
文摘This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.
文摘This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)+2 种基金the Program for Excellent Talents in Universities of Liaoning Province, China (Grant No. LR2012003)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06)
文摘A digital image encryption scheme using chaotic map lattices has been proposed recently. In this paper, two fatal flaws of the cryptosystem are pointed out. According to these two drawbacks, cryptanalysts could recover the plaintext by applying the chosen plaintext attack. Therefore, the proposed cryptosystem is not secure enough to be used in the image transmission system. Experimental results show the feasibility of the attack. As a result, we make some improvements to the encryption scheme, which can completely resist our chosen plaintext attack.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
基金the National Natural Science Foundation of China(Grant No.61972103)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515011207)+3 种基金the Special Project in Key Area of General University in Guangdong Province of China(Grant No.2020ZDZX3064)the Characteristic Innovation Project of General University in Guangdong Province of China(Grant No.2022KTSCX051)the Postgraduate Education Innovation Project of Guangdong Ocean University of China(Grant No.202263)the Foundation of Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China Sea.
文摘Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.
文摘A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states.The method,based on the Lyapunov stability theory and the pole placement technique,presents some useful features:(i) it enables synchronization to be achieved for both cases of n 〈 m and n 〉 m;(ii) it is rigorous,being based on theorems;(iii) it can be readily applied to any chaotic(hyperchaotic) maps defined to date.Finally,the capability of the approach is illustrated by synchronization examples between the two-dimensional H′enon map(as the drive system) and the three-dimensional hyperchaotic Wang map(as the response system),and the three-dimensional H′enon-like map(as the drive system) and the two-dimensional Lorenz discrete-time system(as the response system).
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LZ12F02005)the Major State Basic Research Development Program of China(Grant No.2013CB834205)the National Natural Science Foundation of China(Grant No.61070153)
文摘In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password- based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well- organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant No.61462033)
文摘Three-party password-based key agreement protocols allow two users to authenticate each other via a public channel and establish a session key with the aid of a trusted server. Recently, Farash et al. [Farash M S, Attari M A 2014 "An efficient and provably secure three-party password-based authenticated key exchange protocol based on Chebyshev chaotic maps", Nonlinear Dynamics 77(7): 399-411] proposed a three-party key agreement protocol by using the extended chaotic maps. They claimed that their protocol could achieve strong security. In the present paper, we analyze Farash et al.'s protocol and point out that this protocol is vulnerable to off-line password guessing attack and suffers communication burden. To handle the issue, we propose an efficient three-party password-based key agreement protocol using extended chaotic maps, which uses neither symmetric cryptosystems nor the server's public key. Compared with the relevant schemes, our protocol provides better performance in terms of computation and communication. Therefore, it is suitable for practical applications.
基金the National Natural Science Foundation of China (Grant Nos. 61161006 and 61573383)
文摘To ensure the safe transmission of image information in communication, and improve the security performance of image encryption algorithm, we proposed a color image encryption algorithm with higher security based on chaotic system. Firstly, the 2-dimensional Cubic ICMIC modulation map(2D-CIMM) is designed, which has simple form, easy to construct, and high Spectral Entropy(SE) complexity. Secondly, the hash values of the original image are used to update the initial values of the 2D-CIMM map in real time, which increases the sensitivity of the image encryption algorithm to the plaintext and improves the finite precision effect. Finally, the permutation and diffusion processes of the encryption algorithm based on bit-level are performed. In addition, simulation and performance analysis show that the proposed algorithm has higher security.
基金The National Science Foundation of China (NSFC) (No.60702025)the Research Fund for the Doctoral Program of Higher Education (RFDP)( No.20070613024)+1 种基金Sichuan Youth Science & Technology Foundation of China (No. 07ZQ026-004)Southwest Jiaotong University Development Foundation (No.2006A04)
文摘Taking full advantage of the randomicity of chaotic system and its extreme sensitivity to the initial value, a new chaotic fragile watermarking algorithm is proposed. In the algorithm, the location key is looked as a logistic chaotic initial value for iteration to create a location matrix. According to this location matrix, a mapping image is generated and the embedding location of watermarking in image blocks is identified. Then, the watermarking sequence, which is related with the mapping image blocks and generated by H6non chaotic map, is embedded into the least significant bit ( LSB ) of the corresponding location in each block. Since the image content and watermarking are staggered, the algorithm has a higher security. Simulation results showed that the algorithm can detect and locate the tamper in watermarked images with an accuracy of 2 × 2 block pixels. At the same time, the watermarking images has good invisibility, and the original image is not required when extracting watermarking.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003)The Ministry of Education Research in the Humanities and Social Sciences Planning Fund, China (Grant No. 12YJAZH120)
文摘A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 60774088 and 10772135)the Program for New Century Excellent Talents in University of China (NCET)the Foundation of the Application Base and Frontier Technology Research Project of Tianjin (Grant Nos 08JCZDJC21900 and 07CYBJC05800)
文摘Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, its degree is randomly chosen according to a predetermined degree distribution, and its neighbours used to generate that encoding symbol are chosen uniformly at random. Practical implementation of LT codes usually realizes the randomness through pseudo-randomness number generator like linear congruential method. This paper applies the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. It is shown that the implemented LT codes based on chaos perform better than the LT codes implemented by the traditional pseudo-randomness number generator.