The sliding mode control method is used to study spatiotemporal chaos synchronization of an uncertain network.The method is extended from synchronization between two chaotic systems to the synchronization of complex n...The sliding mode control method is used to study spatiotemporal chaos synchronization of an uncertain network.The method is extended from synchronization between two chaotic systems to the synchronization of complex network composed of N spatiotemporal chaotic systems.The sliding surface of the network and the control input are designed.Furthermore,the effectiveness of the method is analysed based on the stability theory.The Burgers equation with spatiotemporal chaos behavior is taken as an example to simulate the experiment.It is found that the synchronization performance of the network is very stable.展开更多
This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical n...This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.展开更多
In this paper, the asymptotical p-moment stability of stochastic impulsive differential equations is studied and a comparison theory to ensure the asymptotical p-moment stability of the trivial solution is established...In this paper, the asymptotical p-moment stability of stochastic impulsive differential equations is studied and a comparison theory to ensure the asymptotical p-moment stability of the trivial solution is established, which is important for studying the impulsive control and synchronization in stochastic systems. As an application of this theory, we study the problem of chaos synchronization in the Chen system excited by parameter white-noise excitation, by using the impulsive method. Numerical simulations verify the feasibility of this method.展开更多
In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive ob...In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.展开更多
Projective synchronization of a weighted complex network is studied in which nodes are spatiotemporal chaos systems and all nodes are coupled not with the nonlinear terms of the system but through a weighted connectio...Projective synchronization of a weighted complex network is studied in which nodes are spatiotemporal chaos systems and all nodes are coupled not with the nonlinear terms of the system but through a weighted connection. The range of the linear coefficient matrix of separated configuration, when the synchronization is implemented, is determined according to Lyapunov stability theory. It is found that projective synchronization can be realized for unidirectional star-connection even if the coupling strength between the nodes is a given arbitrary weight value. The Gray-Scott models having spatiotemporal Chaos behaviours are taken as nodes in the weighted complex network, and simulation results of spatiotemporal synchronization show the effectiveness of the method.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
We present a scheme for chaotic synchronization in two resistive- capacitive-inductive shunted Josephson junctions (RCLSJJs) by using another chaotic RCLSJJ as a driving system. Numerical simulations show that wheth...We present a scheme for chaotic synchronization in two resistive- capacitive-inductive shunted Josephson junctions (RCLSJJs) by using another chaotic RCLSJJ as a driving system. Numerical simulations show that whether the two RCLSJJs are chaotic or not before being driven, they can realize chaotic synchronization with a suitable driving intensity, under which the maximum condition Lyapunov exponent (MCLE) is negative. On the other hand, if the driving system is in different periodic states or chaotic states, the two driven RCLSJJs can be controlled into the periodic states with different period numbers or chaotic states but still maintain the synchronization.展开更多
Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realiz...Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.展开更多
The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term c...The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term coefficient of the separated configuration in state equation of the node are obtained through constructing an appropriate Lyapunov function. Each node of the complex network is a laser spatiotemporal chaos model in which the phase-conjugate wave and the unilateral coupled map lattice are taken as a local function and a spatially extended system, respectively. The simulation results show the effectiveness of the signal synchronization transmission principle of the network.展开更多
This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the ...This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.展开更多
This paper studies the synchronization of complex dynamical networks constructed by spatiotemporal chaotic systems with unknown parameters. The state variables in the systems with uncertain parameters are used to cons...This paper studies the synchronization of complex dynamical networks constructed by spatiotemporal chaotic systems with unknown parameters. The state variables in the systems with uncertain parameters are used to construct the parameter recognizers, and the unknown parameters are identified. Uncertain spatiotemporal chaotic systems are taken as the nodes of complex dynamical networks, connection among the nodes of all the spatiotemporal chaotic systems is of nonlinear coupling. The structure of the coupling functions between the connected nodes and the control gain are obtained based on Lyapunov stability theory. It is seen that stable chaos synchronization exists in the whole network when the control gain is in a certain range. The Gray-Scott models which have spatiotemporal chaotic behaviour are taken as examples for simulation and the results show that the method is very effective.展开更多
A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal c...A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh-Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory, and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh-Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal.展开更多
We investigate the problem of coordinated chaos control on an urban expressway based on pinning synchronization of complex networks. A node coupling model of an urban expressway based on complex networks has been esta...We investigate the problem of coordinated chaos control on an urban expressway based on pinning synchronization of complex networks. A node coupling model of an urban expressway based on complex networks has been established using the cell transmission model(CTM). The pinning controller corresponding to multi-ramp coordinated controller was designed by using the delayed feedback control(DFC) method, whose objective is to realize periodical orbits from chaotic states. The concrete pinning control nodes corresponding to the subsystems of regulating the inflows from the on-ramps to the mainline were obtained and the parameters of the controller were optimized by using the stability theory of complex networks to ensure the network synchronization. The validity of the proposed coordinated chaos control method was proven via the simulation experiment. The results of the examples indicated that the order motion on urban expressway can be realized, the wide-moving traffic jam can be suppressed, and the operating efficiency is superior to that of the traditional control methods.展开更多
In this paper, a new method for controlling projective synchronization in coupled chaotic systems is presented. The control method is based on a partially linear decomposition and negative feedback of state errors. Fi...In this paper, a new method for controlling projective synchronization in coupled chaotic systems is presented. The control method is based on a partially linear decomposition and negative feedback of state errors. Firstly, the synchronizability of the proposed projective synchronization control method is proved mathematically. Then, three different representative examples are discussed to verify the correctness and effectiveness of the proposed control method.展开更多
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig...An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.展开更多
The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior,called chaos,could happen even in a deterministic nonlinear system under barely deter...The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior,called chaos,could happen even in a deterministic nonlinear system under barely deterministic disturbance.After a series of serious studies,people begin to acknowledge that chaos is a specific type of steady state motion other than the conventional periodic and quasi-periodic ones,featuring a sensitive dependence on initial conditions,resulting from the intrinsic randomness of a nonlinear system itself.In fact,chaos is a collective phenomenon consisting of massive individual chaotic responses,corresponding to different initial conditions in phase space.Any two adjacent individual chaotic responses repel each other,thus causing not only the sensitive dependence on initial conditions but also the existence of at least one positive top Lyapunov exponent(TLE) for chaos.Meanwhile,all the sample responses share one common invariant set on the Poincaré map,called chaotic attractor,which every sample response visits from time to time ergodically.So far,the existence of at least one positive TLE is a commonly acknowledged remarkable feature of chaos.We know that there are various forms of uncertainties in the real world.In theoretical studies,people often use stochastic models to describe these uncertainties,such as random variables or random processes.Systems with random variables as their parameters or with random processes as their excitations are often called stochastic systems.No doubt,chaotic phenomena also exist in stochastic systems,which we call stochastic chaos to distinguish it from deterministic chaos in the deterministic system.Stochastic chaos reflects not only the intrinsic randomness of the nonlinear system but also the external random effects of the random parameter or the random excitation.Hence,stochastic chaos is also a collective massive phenomenon,corresponding not only to different initial conditions but also to different samples of the random parameter or the random excitation.Thus,the unique common feature of deterministic chaos and stochastic chaos is that they all have at least one positive top Lyapunov exponent for their chaotic motion.For analysis of random phenomena,one used to look for the PDFs(Probability Density Functions) of the ensemble random responses.However,it is a pity that PDF information is not favorable to studying repellency of the neighboring chaotic responses nor to calculating the related TLE,so we would rather study stochastic chaos through its sample responses.Moreover,since any sample of stochastic chaos is a deterministic one,we need not supplement any additional definition on stochastic chaos,just mentioning that every sample of stochastic chaos should be deterministic chaos.We are mainly concerned with the following two basic kinds of nonlinear stochastic systems,i.e.one with random variables as its parameters and one with ergodical random processes as its excitations.To solve the stochastic chaos problems of these two kinds of systems,we first transform the original stochastic system into their equivalent deterministic ones.Namely,we can transform the former stochastic system into an equivalent deterministic system in the sense of mean square approximation with respect to the random parameter space by the orthogonal polynomial approximation,and transform the latter one simply through replacing its ergodical random excitations by their representative deterministic samples.Having transformed the original stochastic chaos problem into the deterministic chaos problem of equivalent systems,we can use all the available effective methods for further chaos analysis.In this paper,we aim to review the state of art of studying stochastic chaos with its control and synchronization by the above-mentioned strategy.展开更多
In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchroniz...In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchronizes with a linear combination of response system states. The proposed observer-based approach presents some useful features: i) it enables exact synchronization to be achieved in finite time (i.e., dead-beat synchronization); ii) it exploits a scalar synchronizing signal; iii) it can be applied to a wide class of discrete-time chaotic (hyperchaotic) systems; iv) it includes, as a particular case, most of the synchronization types defined so far. An example is reported, which shows in detail that exact synchronization is effectively achieved in finite time, using a scalar synchronizing signal only, for any arbitrary scaling matrix.展开更多
Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states f...Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states for any arbitrary scaling matrix. The proposed method, based on a structural condition related to the uncontrollable eigenvalues of the error system, can be applied to a wide class of continuous-time chaotic (hyperchaotic) systems and represents a general framework that includes any type of synchronization defined to date. An example involving a hyperchaotic oscillator is reported, with the aim of showing how a response system attractor is arbitrarily shaped using a scalar synchronizing signal only. Finally, it is shown that the recently introduced dislocated synchronization can be readily achieved using the conceived scheme.展开更多
In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents ...In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on the finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
基金Project supported by the Natural Science Foundation of Liaoning Province,China (Grant No. 20082147)the Innovative Team Program of Liaoning Educational Committee,China (Grant No. 2008T108)
文摘The sliding mode control method is used to study spatiotemporal chaos synchronization of an uncertain network.The method is extended from synchronization between two chaotic systems to the synchronization of complex network composed of N spatiotemporal chaotic systems.The sliding surface of the network and the control input are designed.Furthermore,the effectiveness of the method is analysed based on the stability theory.The Burgers equation with spatiotemporal chaos behavior is taken as an example to simulate the experiment.It is found that the synchronization performance of the network is very stable.
基金Project supported by the Natural Science Foundation of Liaoning Province,China(Grant No.20082147)the Innovative Team Program of Liaoning Educational Committee,China(Grant No.2008T108)
文摘This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘In this paper, the asymptotical p-moment stability of stochastic impulsive differential equations is studied and a comparison theory to ensure the asymptotical p-moment stability of the trivial solution is established, which is important for studying the impulsive control and synchronization in stochastic systems. As an application of this theory, we study the problem of chaos synchronization in the Chen system excited by parameter white-noise excitation, by using the impulsive method. Numerical simulations verify the feasibility of this method.
文摘In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.
基金Project supported by the Natural Science Foundation of Liaoning Province,China(Grant No.20082147)the Innovative Team Program of Liaoning Educational Committee,China(Grant No.2008T108)
文摘Projective synchronization of a weighted complex network is studied in which nodes are spatiotemporal chaos systems and all nodes are coupled not with the nonlinear terms of the system but through a weighted connection. The range of the linear coefficient matrix of separated configuration, when the synchronization is implemented, is determined according to Lyapunov stability theory. It is found that projective synchronization can be realized for unidirectional star-connection even if the coupling strength between the nodes is a given arbitrary weight value. The Gray-Scott models having spatiotemporal Chaos behaviours are taken as nodes in the weighted complex network, and simulation results of spatiotemporal synchronization show the effectiveness of the method.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
文摘We present a scheme for chaotic synchronization in two resistive- capacitive-inductive shunted Josephson junctions (RCLSJJs) by using another chaotic RCLSJJ as a driving system. Numerical simulations show that whether the two RCLSJJs are chaotic or not before being driven, they can realize chaotic synchronization with a suitable driving intensity, under which the maximum condition Lyapunov exponent (MCLE) is negative. On the other hand, if the driving system is in different periodic states or chaotic states, the two driven RCLSJJs can be controlled into the periodic states with different period numbers or chaotic states but still maintain the synchronization.
文摘Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.
基金Project supported by the Natural Science Foundation of Liaoning Province,China (Grant No. 20082147)
文摘The signal synchronization transmission of a spatiotemporal chaos network is investigated. The structure of the coupling function between connected nodes of the complex network and the value range of the linear term coefficient of the separated configuration in state equation of the node are obtained through constructing an appropriate Lyapunov function. Each node of the complex network is a laser spatiotemporal chaos model in which the phase-conjugate wave and the unilateral coupled map lattice are taken as a local function and a spatially extended system, respectively. The simulation results show the effectiveness of the signal synchronization transmission principle of the network.
基金Project supported by the National Natural Science Foundation of China (Grant No 90405011), the Natural Science Foundation of Jiangsu Province, China (Grant No 05KJD120083) and the Natural Science Foundation of Nanjing Institute of Technology, China (Grant No KXJ06047).
文摘This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.
基金Project Supported by the National Natural Science Foundation of China(Grant No.60974004)
文摘This paper studies the synchronization of complex dynamical networks constructed by spatiotemporal chaotic systems with unknown parameters. The state variables in the systems with uncertain parameters are used to construct the parameter recognizers, and the unknown parameters are identified. Uncertain spatiotemporal chaotic systems are taken as the nodes of complex dynamical networks, connection among the nodes of all the spatiotemporal chaotic systems is of nonlinear coupling. The structure of the coupling functions between the connected nodes and the control gain are obtained based on Lyapunov stability theory. It is seen that stable chaos synchronization exists in the whole network when the control gain is in a certain range. The Gray-Scott models which have spatiotemporal chaotic behaviour are taken as examples for simulation and the results show that the method is very effective.
基金Project Supported by the National Natural Science Foundation of China (Grant No.60974004)
文摘A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh-Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory, and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh-Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal.
基金Project supported by the National Natural Science Foundation of China(Grant No.50478088)the Natural Science Foundation of Hebei Province,China(Grant No.E2015202266)
文摘We investigate the problem of coordinated chaos control on an urban expressway based on pinning synchronization of complex networks. A node coupling model of an urban expressway based on complex networks has been established using the cell transmission model(CTM). The pinning controller corresponding to multi-ramp coordinated controller was designed by using the delayed feedback control(DFC) method, whose objective is to realize periodical orbits from chaotic states. The concrete pinning control nodes corresponding to the subsystems of regulating the inflows from the on-ramps to the mainline were obtained and the parameters of the controller were optimized by using the stability theory of complex networks to ensure the network synchronization. The validity of the proposed coordinated chaos control method was proven via the simulation experiment. The results of the examples indicated that the order motion on urban expressway can be realized, the wide-moving traffic jam can be suppressed, and the operating efficiency is superior to that of the traditional control methods.
基金Project supported by the National Nature Science Foundation of China (Grant No 70571017).
文摘In this paper, a new method for controlling projective synchronization in coupled chaotic systems is presented. The control method is based on a partially linear decomposition and negative feedback of state errors. Firstly, the synchronizability of the proposed projective synchronization control method is proved mathematically. Then, three different representative examples are discussed to verify the correctness and effectiveness of the proposed control method.
基金Project supported by the Research Foundation of Education Bureau of Hebei Province,China(Grant No.QN2014096)
文摘An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.
基金Project supported by National Natural Science Foundation of China (10872165)Northwestern Polytechnical University (CX200712)
文摘The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior,called chaos,could happen even in a deterministic nonlinear system under barely deterministic disturbance.After a series of serious studies,people begin to acknowledge that chaos is a specific type of steady state motion other than the conventional periodic and quasi-periodic ones,featuring a sensitive dependence on initial conditions,resulting from the intrinsic randomness of a nonlinear system itself.In fact,chaos is a collective phenomenon consisting of massive individual chaotic responses,corresponding to different initial conditions in phase space.Any two adjacent individual chaotic responses repel each other,thus causing not only the sensitive dependence on initial conditions but also the existence of at least one positive top Lyapunov exponent(TLE) for chaos.Meanwhile,all the sample responses share one common invariant set on the Poincaré map,called chaotic attractor,which every sample response visits from time to time ergodically.So far,the existence of at least one positive TLE is a commonly acknowledged remarkable feature of chaos.We know that there are various forms of uncertainties in the real world.In theoretical studies,people often use stochastic models to describe these uncertainties,such as random variables or random processes.Systems with random variables as their parameters or with random processes as their excitations are often called stochastic systems.No doubt,chaotic phenomena also exist in stochastic systems,which we call stochastic chaos to distinguish it from deterministic chaos in the deterministic system.Stochastic chaos reflects not only the intrinsic randomness of the nonlinear system but also the external random effects of the random parameter or the random excitation.Hence,stochastic chaos is also a collective massive phenomenon,corresponding not only to different initial conditions but also to different samples of the random parameter or the random excitation.Thus,the unique common feature of deterministic chaos and stochastic chaos is that they all have at least one positive top Lyapunov exponent for their chaotic motion.For analysis of random phenomena,one used to look for the PDFs(Probability Density Functions) of the ensemble random responses.However,it is a pity that PDF information is not favorable to studying repellency of the neighboring chaotic responses nor to calculating the related TLE,so we would rather study stochastic chaos through its sample responses.Moreover,since any sample of stochastic chaos is a deterministic one,we need not supplement any additional definition on stochastic chaos,just mentioning that every sample of stochastic chaos should be deterministic chaos.We are mainly concerned with the following two basic kinds of nonlinear stochastic systems,i.e.one with random variables as its parameters and one with ergodical random processes as its excitations.To solve the stochastic chaos problems of these two kinds of systems,we first transform the original stochastic system into their equivalent deterministic ones.Namely,we can transform the former stochastic system into an equivalent deterministic system in the sense of mean square approximation with respect to the random parameter space by the orthogonal polynomial approximation,and transform the latter one simply through replacing its ergodical random excitations by their representative deterministic samples.Having transformed the original stochastic chaos problem into the deterministic chaos problem of equivalent systems,we can use all the available effective methods for further chaos analysis.In this paper,we aim to review the state of art of studying stochastic chaos with its control and synchronization by the above-mentioned strategy.
文摘In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchronizes with a linear combination of response system states. The proposed observer-based approach presents some useful features: i) it enables exact synchronization to be achieved in finite time (i.e., dead-beat synchronization); ii) it exploits a scalar synchronizing signal; iii) it can be applied to a wide class of discrete-time chaotic (hyperchaotic) systems; iv) it includes, as a particular case, most of the synchronization types defined so far. An example is reported, which shows in detail that exact synchronization is effectively achieved in finite time, using a scalar synchronizing signal only, for any arbitrary scaling matrix.
文摘Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states for any arbitrary scaling matrix. The proposed method, based on a structural condition related to the uncontrollable eigenvalues of the error system, can be applied to a wide class of continuous-time chaotic (hyperchaotic) systems and represents a general framework that includes any type of synchronization defined to date. An example involving a hyperchaotic oscillator is reported, with the aim of showing how a response system attractor is arbitrarily shaped using a scalar synchronizing signal only. Finally, it is shown that the recently introduced dislocated synchronization can be readily achieved using the conceived scheme.
文摘In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on the finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.