An improved genetic algorithm (GA) is proposed based on the analysis of population diversity within the framework of Markov chain. The chaos operator to combat premature convergence concerning two goals of maintaining...An improved genetic algorithm (GA) is proposed based on the analysis of population diversity within the framework of Markov chain. The chaos operator to combat premature convergence concerning two goals of maintaining diversity in the population and sustaining the convergence capacity of the GA is introduced. In the CHaos Genetic Algorithm (CHGA), the population is recycled dynamically whereas the most highly fit chromosome is intact so as to restore diversity and reserve the best schemata which may belong to the optimal solution. The characters of chaos as well as advanced operators and parameter settings can improve both exploration and exploitation capacities of the algorithm. The results of multimodal function optimization show that CHGA performs simple genetic algorithms and effectively alleviates the problem of premature convergence.展开更多
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou...In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.展开更多
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co...By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.展开更多
In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA, thus forming chaotic anneal genetic algorithm (CAGA). Chaos ergodicity is used to initialize the population, and ...In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA, thus forming chaotic anneal genetic algorithm (CAGA). Chaos ergodicity is used to initialize the population, and chaotic anneal mutation operator is used as the substitute for the mutation operator in SGA. CAGA is a unified framework of the existing chaotic mutation methods. To validate the proposed algorithm, three algorithms, i. e. Baum-Welch, SGA and CAGA, are compared on training hidden Markov model (HMM) to recognize the hand gestures. Experiments on twenty-six alphabetical gestures show the CAGA validity.展开更多
This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic ...This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.展开更多
Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and infor...Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm, asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Information exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory programming model is set up and solved by CMPPGA with satisfactory results returned.展开更多
为进一步提高光伏发电功率超短期预测的准确度,提出一种基于混沌理论(Chaos)-集合经验模态分解(ensemble empirical mode decomposition,EEMD)-峰值频段划分(peak frequency band division,PFBD)和GA-BP神经网络的光伏发电功率组合预测...为进一步提高光伏发电功率超短期预测的准确度,提出一种基于混沌理论(Chaos)-集合经验模态分解(ensemble empirical mode decomposition,EEMD)-峰值频段划分(peak frequency band division,PFBD)和GA-BP神经网络的光伏发电功率组合预测法。首先,在光伏发电功率序列相空间重构的基础上,采用EEMD和PFBD对隐含混沌特征进行优化提取,以深度挖掘数据隐含波动信息,提取平稳性好、可预测性强的聚合分量;然后,利用GA优化BP神经网络(BPNN)的初始权值与阈值,构建GA-BP神经网络预测模型,进行光伏发电功率单步和三步预测;最后基于实测功率数据进行有效性验证。仿真结果表明:所提预测法通过数据分解重构和GA优化可实现预测准确度的提高,显示出良好预测性能。展开更多
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy con...In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.展开更多
基金The National Natural Science Foundation of China !(No .699740 43 )
文摘An improved genetic algorithm (GA) is proposed based on the analysis of population diversity within the framework of Markov chain. The chaos operator to combat premature convergence concerning two goals of maintaining diversity in the population and sustaining the convergence capacity of the GA is introduced. In the CHaos Genetic Algorithm (CHGA), the population is recycled dynamically whereas the most highly fit chromosome is intact so as to restore diversity and reserve the best schemata which may belong to the optimal solution. The characters of chaos as well as advanced operators and parameter settings can improve both exploration and exploitation capacities of the algorithm. The results of multimodal function optimization show that CHGA performs simple genetic algorithms and effectively alleviates the problem of premature convergence.
基金Project(51176045)supported by the National Natural Science Foundation of ChinaProject(2011ZK2032)supported by the Major Soft Science Program of Science and Technology Ministry of Hunan Province,China
文摘In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.
基金Project(60874114) supported by the National Natural Science Foundation of China
文摘By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.
文摘In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA, thus forming chaotic anneal genetic algorithm (CAGA). Chaos ergodicity is used to initialize the population, and chaotic anneal mutation operator is used as the substitute for the mutation operator in SGA. CAGA is a unified framework of the existing chaotic mutation methods. To validate the proposed algorithm, three algorithms, i. e. Baum-Welch, SGA and CAGA, are compared on training hidden Markov model (HMM) to recognize the hand gestures. Experiments on twenty-six alphabetical gestures show the CAGA validity.
基金supported by the National Natural Science Foundation of China (60901055)
文摘This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.
文摘Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm, asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Information exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory programming model is set up and solved by CMPPGA with satisfactory results returned.
文摘为进一步提高光伏发电功率超短期预测的准确度,提出一种基于混沌理论(Chaos)-集合经验模态分解(ensemble empirical mode decomposition,EEMD)-峰值频段划分(peak frequency band division,PFBD)和GA-BP神经网络的光伏发电功率组合预测法。首先,在光伏发电功率序列相空间重构的基础上,采用EEMD和PFBD对隐含混沌特征进行优化提取,以深度挖掘数据隐含波动信息,提取平稳性好、可预测性强的聚合分量;然后,利用GA优化BP神经网络(BPNN)的初始权值与阈值,构建GA-BP神经网络预测模型,进行光伏发电功率单步和三步预测;最后基于实测功率数据进行有效性验证。仿真结果表明:所提预测法通过数据分解重构和GA优化可实现预测准确度的提高,显示出良好预测性能。
文摘In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.