期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于RBF神经网络的海杂波建模 被引量:11
1
作者 陈瑛 罗鹏飞 曾勇虎 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第3期524-526,530,共4页
从相空间重构理论出发,构造了一个RBF神经网络预测器来重构海杂波的内在动力学,并且利用这个确定性的模型对海杂波的演变进行预测。为验证模型的推广性能,采用了多步预测。对雷达采集的实际海杂波数据的实验结果表明,这个确定性的模型... 从相空间重构理论出发,构造了一个RBF神经网络预测器来重构海杂波的内在动力学,并且利用这个确定性的模型对海杂波的演变进行预测。为验证模型的推广性能,采用了多步预测。对雷达采集的实际海杂波数据的实验结果表明,这个确定性的模型可以很好地追踪海杂波的演变。文中还分析了该RBF神经网络预测器在不同高斯白噪声条件下的预测性能,得出了其预测误差与杂噪比(CNR)的关系。 展开更多
关键词 海杂波 混沌 rbf神经网络 预测
在线阅读 下载PDF
基于RBF神经网络和重复控制PID的电动负载模拟器复合控制 被引量:7
2
作者 王修岩 刘艳敏 李宗帅 《电力科学与技术学报》 CAS 北大核心 2017年第1期84-89,共6页
针对电动负载模拟器运行过程中存在的多余力矩问题,提出RBF神经网络和重复控制PID与前馈补偿控制器相结合的电动负载模拟器复合控制方法。该方法充分利用重复控制PID的优点,加入RBF神经网络控制,形成一种具有较强的抗干扰能力、较好的... 针对电动负载模拟器运行过程中存在的多余力矩问题,提出RBF神经网络和重复控制PID与前馈补偿控制器相结合的电动负载模拟器复合控制方法。该方法充分利用重复控制PID的优点,加入RBF神经网络控制,形成一种具有较强的抗干扰能力、较好的跟踪性能和自适应能力的控制算法;结合舵机速度的前馈补偿,实现多余力矩的抑制;引入弹簧杆,降低系统有害力矩,提高系统稳定性。仿真分析验证了所提复合控制方法的有效性和可行性。 展开更多
关键词 电动负载模拟器 复合控制 rbf神经网络 重复控制PID
在线阅读 下载PDF
基于混沌的大坝监测序列小波RBF神经网络预测模型 被引量:9
3
作者 戴波 陈波 《水利水电技术》 CSCD 北大核心 2016年第2期80-85,共6页
本文结合混沌理论、小波分解与重构,以及径向基函数(RBF)神经网络的优点,提出了一种基于混沌的大坝监测序列小波RBF神经网络预测模型。该模型主要利用小波分析将大坝监测序列分解为趋势项和细节时间序列,并利用RBF神经网络和基于RBF神... 本文结合混沌理论、小波分解与重构,以及径向基函数(RBF)神经网络的优点,提出了一种基于混沌的大坝监测序列小波RBF神经网络预测模型。该模型主要利用小波分析将大坝监测序列分解为趋势项和细节时间序列,并利用RBF神经网络和基于RBF神经网络的混沌理论对两种时间序列进行预测,最后通过小波重构得到预测值。实例分析表明,本模型能够克服监测序列中的噪声干扰,反映大坝监测序列的多尺度特性,对监测数据的预测精度较高,可应用于实际工程。 展开更多
关键词 混沌 小波分析 rbf神经网络 预测模型 大坝安全监测
在线阅读 下载PDF
基于RBF多变量时间序列的滑坡位移预测研究 被引量:8
4
作者 曾耀 李春峰 《长江科学院院报》 CSCD 北大核心 2012年第4期30-34,共5页
斜坡是一个受到多种因素影响的混沌动力系统,斜坡位移是其内部力学现象的宏观表现,具有很强的不确定性,从而导致难以建立斜坡位移的确定性方程。滑坡是斜坡的一种成因类型,具有相同的系统特性。滑坡经过防治后,其位移的主要外在动力因... 斜坡是一个受到多种因素影响的混沌动力系统,斜坡位移是其内部力学现象的宏观表现,具有很强的不确定性,从而导致难以建立斜坡位移的确定性方程。滑坡是斜坡的一种成因类型,具有相同的系统特性。滑坡经过防治后,其位移的主要外在动力因素除地下水外同时还受到防治设施的控制。滑坡位移及其影响因素所构成的混沌时间序列能够反映滑坡位移动力系统的历史行为。根据观测获得的多变量时间序列重构原滑坡位移动力系统,采用RBF神经网络实现变量间的映射关系,对滑坡位移进行了预测。预测结果对比分析表明:采用多变量时间序列预测模型能对滑坡位移进行有效预测,取得比单变量时间序列预测模型更好的预测效果;多变量时间序列预测模型具有更明确的物理力学意义,更能反映滑坡演化变形的实质特征。 展开更多
关键词 滑坡预测 混沌 多变量时间序列 rbf神经网络
在线阅读 下载PDF
基于改进RBF神经网络的电力系统短期负荷预测 被引量:5
5
作者 杨胡萍 白慧 +1 位作者 刘家学 张力 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期204-207,共4页
提出一种交替梯度算法,对径向基函数(RBF)神经网络的训练进行改进.改进的算法与传统梯度下降算法相比,具有更快的收敛速度和更高的预测精度.采用该改进算法应用于电力系统短期负荷预测模型,综合考虑了气象、日类型等影响负荷变化的因素... 提出一种交替梯度算法,对径向基函数(RBF)神经网络的训练进行改进.改进的算法与传统梯度下降算法相比,具有更快的收敛速度和更高的预测精度.采用该改进算法应用于电力系统短期负荷预测模型,综合考虑了气象、日类型等影响负荷变化的因素,预测结果表明该算法具有一定实用性. 展开更多
关键词 短期负荷预测 交替梯度算法 径向基函数(rbf)神经网络 电力系统
在线阅读 下载PDF
混沌RBF神经网络在电力负荷预测中的应用 被引量:1
6
作者 毕洪波 张玉波 《科学技术与工程》 2009年第24期7489-7492,共4页
混沌和RBF神经网络相结合的方法,可以充分利用混沌的随机性、初值敏感性等特点,也可以充分利用RBF神经网络的大规模并行处理、自组织自适应性等功能,因此,受到了许多研究者的青睐。研究了混沌RBF神经网络,利用RBF神经网络的学习、逼近能... 混沌和RBF神经网络相结合的方法,可以充分利用混沌的随机性、初值敏感性等特点,也可以充分利用RBF神经网络的大规模并行处理、自组织自适应性等功能,因此,受到了许多研究者的青睐。研究了混沌RBF神经网络,利用RBF神经网络的学习、逼近能力,结合混沌时间序列的嵌入维数、时延等参数构造了混沌RBF神经网络,分别对典型混沌序列及混沌RBF神经网络的建模预测进行仿真,并将RBF神经网络应用于油田电力负荷预测中。仿真分析和实用结果表明,混沌RBF神经网络具有预测时间短、预测精度高等优点,具有较高的指导意义和应用价值。 展开更多
关键词 混沌 rbf神经网络 电力负荷 预测
在线阅读 下载PDF
一种新型光伏能源电力中长期功率波动预测模型构建
7
作者 武光华 李宏胜 +1 位作者 李鵾 柳长发 《电网与清洁能源》 北大核心 2025年第1期130-136,共7页
光伏发电因受太阳辐射周期、地理环境及各种气象因素变化的影响,而使中长期功率波动有较强的不确定性。构建一种新型光伏能源电力中长期功率波动预测模型。基于光伏电池板辐照强度数据的归一化处理,构建光伏发电功率序列波动基础模型;... 光伏发电因受太阳辐射周期、地理环境及各种气象因素变化的影响,而使中长期功率波动有较强的不确定性。构建一种新型光伏能源电力中长期功率波动预测模型。基于光伏电池板辐照强度数据的归一化处理,构建光伏发电功率序列波动基础模型;根据波动不确定性,引入模糊径向基函数网络(radial basis function network,RBF)神经网络,利用模糊属性评估波动性,将模型分为5个层级,完成光伏能源电力中长期功率波动的预测。实验结果表明:该方法预测的均方根误差最小值为0.12 kW、平均绝对偏差最小值为0.11 kW、平均绝对百分比误差最小值为1.5%;中长期功率波动预测范围为-9~6 kW,与实际情况完全相符。证明了所构建模型的应用精度更高,性能更理想。 展开更多
关键词 新型光伏能源 电力中长期功率 波动不确定 预测模型构建 模糊rbf神经网络
在线阅读 下载PDF
基于遗传优化RBF神经网络的电动负载模拟器控制 被引量:5
8
作者 魏全增 陈机林 +1 位作者 高强 王超 《现代电子技术》 北大核心 2015年第21期113-117,共5页
针对炮控系统电动负载模拟器存在的摩擦、间隙、弹性形变、对象参数时变和位置扰动等复杂非线性,传统的控制方法难以得到良好的动静态性能指标。结合电动负载模拟器系统组成和工作原理,建立了加载数学模型,利用炮控系统位置控制信号进... 针对炮控系统电动负载模拟器存在的摩擦、间隙、弹性形变、对象参数时变和位置扰动等复杂非线性,传统的控制方法难以得到良好的动静态性能指标。结合电动负载模拟器系统组成和工作原理,建立了加载数学模型,利用炮控系统位置控制信号进行前馈补偿,设计了RBF神经网络控制器,并采用改进遗传算法对控制器的权值、节点和中心矢量等参数进行优化。实验结果表明:该控制策略能够有效抑制多余力矩,保证了系统静、动态加载时的控制精度和稳定性。 展开更多
关键词 电动负载模拟器 rbf神经网络 遗传算法 多余力矩
在线阅读 下载PDF
基于ACFOA优化RBF的短期风电功率预测 被引量:8
9
作者 崔闪 彭道刚 钱玉良 《可再生能源》 CAS 北大核心 2017年第1期80-85,共6页
为了提高短期风电输出功率预测的准确度,在分析研究基本预测方法的基础上,提出采用一种自适应混沌果蝇算法(ACFOA)优化RBF神经网络的预测方法。该方法中引入自适应混沌对果蝇算法的进化机制进行优化,并利用ACFOA算法改善RBF神经网络结... 为了提高短期风电输出功率预测的准确度,在分析研究基本预测方法的基础上,提出采用一种自适应混沌果蝇算法(ACFOA)优化RBF神经网络的预测方法。该方法中引入自适应混沌对果蝇算法的进化机制进行优化,并利用ACFOA算法改善RBF神经网络结构参数以提高网络的泛化能力,同时对某风电场的历史数据进行验证分析。仿真结果表明,相比于PSO-RBF预测方法,采用提出的预测模型能有效减少较大误差出现的频率,大幅度提高风电输出功率预测的准确度。 展开更多
关键词 风电功率 预测模型 rbf神经网络 ACFOA算法 参数优化
在线阅读 下载PDF
基于RBF神经网络的智能负载控制策略研究 被引量:6
10
作者 叶泰然 王婷 +3 位作者 吕捷 吴薛红 周杨 马刚 《电力工程技术》 2020年第5期162-168,共7页
传统用于电力弹簧(ES)控制的PI控制器调节性能较差,且控制方法中未考虑非关键负载突然变化的问题,为解决该问题,根据ES的数学模型和控制电路提出了一种基于径向基函数(RBF)神经网络的智能负载控制方法。利用RBF神经网络算法弥补传统PI... 传统用于电力弹簧(ES)控制的PI控制器调节性能较差,且控制方法中未考虑非关键负载突然变化的问题,为解决该问题,根据ES的数学模型和控制电路提出了一种基于径向基函数(RBF)神经网络的智能负载控制方法。利用RBF神经网络算法弥补传统PI控制器参数固定即无法更改的缺点,通过对控制器参数的实时在线调整来减少智能负载失稳情况,确保系统母线电压稳定。在Matlab/Simulink仿真环境中进行仿真验证,结果表明,与传统PI控制相比,文中所提控制策略下的智能负载对关键负载两端电压的调节性能更优。因此,在基于RBF神经网络的PI新型控制策略下的智能负载具有更好的鲁棒性和系统控制能力。 展开更多
关键词 智能负载 径向基函数(rbf)神经网络算法 电压控制 PI控制器 电力弹簧
在线阅读 下载PDF
复杂工况下基于RBF神经网络的全电推进船舶负荷预测 被引量:3
11
作者 钱宇轩 俞鑫 +3 位作者 柴婷逸 严文博 黄云辉 熊松 《舰船科学技术》 北大核心 2023年第17期97-101,共5页
全电力推进船舶的复杂工况使其负荷情况难以预测,无法确立精确的数学模型刻画,而应用RBF神经网络建立船舶电力系统负荷预测模型具有可靠性和准确性。通过对全电力推进船舶负荷特点的分析和对RBF神经网络负荷预测的基本原理研究,提出一... 全电力推进船舶的复杂工况使其负荷情况难以预测,无法确立精确的数学模型刻画,而应用RBF神经网络建立船舶电力系统负荷预测模型具有可靠性和准确性。通过对全电力推进船舶负荷特点的分析和对RBF神经网络负荷预测的基本原理研究,提出一种基于RBF神经网络的全电力推进船舶的负荷预测方法,选取合理的历史负荷数据,将其归一化处理后输入至RBF神经网络预测模型,再将模型输出反归一化后得到负荷预测结果。在Matlab/Simulink中对某全电力推进船舶在恶劣复杂工况下实际短期运行的负荷情况进行预测,预测准确率高达96.4%。预测结果表明,该方法实现了对复杂工况下全电力推进船舶短期负荷的精准预测,模型拟合程度很高。 展开更多
关键词 复杂工况 全电力推进船舶 rbf神经网络 负荷预测
在线阅读 下载PDF
基于动态自适应图神经网络的电动汽车充电负荷预测 被引量:5
12
作者 张延宇 张智铭 +2 位作者 刘春阳 张西镚 周毅 《电力系统自动化》 EI CSCD 北大核心 2024年第7期86-93,共8页
电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自... 电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自适应相关图结合生成具有时空关联性的综合特征表达式,以捕获充电站负荷的波动性;然后,将提取的特征输入到时空卷积层,捕获时间和空间之间的耦合关系;最后,通过切比雪夫多项式图卷积与多尺度时间卷积提升模型耦合长时间序列之间的能力。以Palo Alto数据集为例,与现有方法相比,所提算法在4种波动情况下的平均预测误差大幅降低。 展开更多
关键词 电动汽车 负荷预测 时空关联特征 自适应图神经网络 注意力机制 时空卷积层
在线阅读 下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:4
13
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向基函数神经网络 粒子群优化算法 参数预测
在线阅读 下载PDF
基于改进LSTM神经网络的电动汽车充电负荷预测 被引量:9
14
作者 林祥 张浩 +1 位作者 马玉立 陈良亮 《现代电子技术》 北大核心 2024年第6期97-101,共5页
当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力。基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法。首先,考虑天气、季节、... 当前对电动汽车(EV)充电负荷预测的研究缺少真实的数据支撑,并且模型考虑场景过于简单,影响因素考虑不到位,预测结果缺乏说服力。基于此,提出一种考虑多种电动汽车充电负荷影响因素的电动汽车充电负荷预测方法。首先,考虑天气、季节、温度、工作日、节假日等因素对电动汽车充电负荷的影响,采用三标度层次分析法分析各影响因素权重;其次,建立LSTM神经网络预测模型,通过真实数据训练得到用于预测的LSTM神经网络模型,结合影响因素权重分析结果对预测模型进行修正,得到最终的改进LSTM神经网络负荷预测模型;最后,采用常州某小区的真实数据对所提预测方法进行试验验证。结果表明,所提方法可以实现电动汽车充电负荷的精确预测,且负荷预测结果可为有序充电策略研究提供参考。 展开更多
关键词 电动汽车 充电负荷预测 LSTM神经网络模型 影响因素权重 层次分析法 有序充电
在线阅读 下载PDF
自回归神经网络的预测值反馈再训练策略及应用 被引量:3
15
作者 莫正阳 李益国 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期738-746,共9页
为提高非线性自回归神经网络(NARX-NN)的多步预测性能,提出了一种预测值反馈再训练(FR)策略.首先采用常规训练策略对NARX-NN进行训练,然后利用模型的单步预测结果替换实测值,得到重构训练集,并指导网络再次训练.为验证FR的有效性,将其... 为提高非线性自回归神经网络(NARX-NN)的多步预测性能,提出了一种预测值反馈再训练(FR)策略.首先采用常规训练策略对NARX-NN进行训练,然后利用模型的单步预测结果替换实测值,得到重构训练集,并指导网络再次训练.为验证FR的有效性,将其应用于3种典型的NARX-NN模型:非线性自回归深度神经网络(NARX-DNN)、基于长短期记忆网络的编码器-解码器(LSTMED)和深度自回归网络(DeepAR),以预测燃煤锅炉NO_(x)质量浓度或综合能源系统电负荷.与常规训练策略和计划采样的对比结果表明,采用FR的NARX-NN具有最高的多步预测精度,其中,LSTMED对NO_(x)质量浓度前向15步预测的平均绝对百分比误差(MAPE)为4.01%;DeepAR对电负荷前向24步预测的平均MAPE为4.34%.配对样本T检验结果表明,FR对NARX-NN的多步预测性能提升具有显著性.通过保持训练阶段和预测阶段输入的一致性,FR有效提升了NARX-NN模型的多步预测精度. 展开更多
关键词 神经网络 多步预测 训练策略 NO_(x)质量浓度 电负荷
在线阅读 下载PDF
基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测 被引量:20
16
作者 刘杰 从兰美 +3 位作者 夏远洋 潘广源 赵汉超 韩子月 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期123-133,共11页
新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改... 新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改进鲸鱼优化算法优化双向长短期记忆(improved whale optimization algorithm-bidirectional long short-term memory,IWOA-BILSTM)神经网络相结合的短期负荷预测模型。首先利用DBO优化VMD,分解时间序列数据,并根据最小包络熵对各种特征数据进行分类,增强了分解效果。通过对原始数据进行有效分解,降低了数据的波动性。然后使用非线性收敛因子、自适应权重策略与随机差分法变异策略增强鲸鱼优化算法的局部及全局搜索能力得到改进鲸鱼优化算法(improved whale optimization algorithm,IWOA),并用于优化双向长短期记忆(bidirectional long short-term memory,BILSTM)神经网络,增加了模型预测的精确度。最后将所提方法应用于某地真实的负荷数据,得到最终相对均方根误差、平均绝对误差和平均绝对百分比误差分别为0.0084、48.09、0.66%,证明了提出的模型对于短期负荷预测的有效性。 展开更多
关键词 蜣螂优化算法 VMD 改进鲸鱼算法 短期电力负荷预测 双向长短期记忆神经网络 组合算法
在线阅读 下载PDF
一种多变量时间序列的短期负荷预测方法研究 被引量:18
17
作者 雷绍兰 孙才新 +2 位作者 周湶 邓群 刘凡 《电工技术学报》 EI CSCD 北大核心 2005年第4期62-67,共6页
针对短期负荷影响因素多的特点提出了电力短期负荷的多变量时间序列预测方法,并根据单变量时间序列的延时重构对由历史负荷序列及其相关因素序列所构成的多变量时间序列进行了相空间重构,采用互信息法计算了各子序列的延迟时间,各子序... 针对短期负荷影响因素多的特点提出了电力短期负荷的多变量时间序列预测方法,并根据单变量时间序列的延时重构对由历史负荷序列及其相关因素序列所构成的多变量时间序列进行了相空间重构,采用互信息法计算了各子序列的延迟时间,各子序列的嵌入维数则运用平均一步绝对误差和最小一步绝对误差进行选取,然后通过RBF神经网络的非线性映射能力进行电力短期负荷预测。研究结果表明多变量时间序列的预测效果相对于单变量序列有较大提高。 展开更多
关键词 短期负荷预测 混沌 多变量时间序列 径向基函数神经网络
在线阅读 下载PDF
非点源污染负荷预测的多变量灰色神经网络模型 被引量:9
18
作者 李家科 李亚娇 +1 位作者 李怀恩 徐晓辉 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2011年第3期229-234,共6页
【目的】建立一种对资料要求较少、精确度较高的非点源污染负荷多变量灰色神经网络预测模型,为有限资料条件下非点源污染负荷的预测提供支持。【方法】针对GM(1,N)模型在原始数据变化幅度较大且趋势不明显时预测效果较差的不足,提出并... 【目的】建立一种对资料要求较少、精确度较高的非点源污染负荷多变量灰色神经网络预测模型,为有限资料条件下非点源污染负荷的预测提供支持。【方法】针对GM(1,N)模型在原始数据变化幅度较大且趋势不明显时预测效果较差的不足,提出并建立用人工神经网络对GM(1,N)模型的残差系列进行修正的改进模型,并将其应用于华县站总氮非点源污染负荷的预测。【结果】在华县站总氮非点源污染负荷预测中,灰色+BP神经网络组合模型拟合预测效果较好,建模阶段和检验阶段的确定性系数(Nash-suttcliffe模拟效率系数)分别为1.00和0.93,优于单独灰色模型或神经网络模型的预测效果。【结论】研究建立的多变量灰色神经网络模型综合了灰色理论和神经网络的优点,提高了模拟精度,为有限资料条件下非点源污染负荷的预测提供了一种有效的方法。 展开更多
关键词 非点源污染 负荷预测 多变量 GM(1 N)模型 BP神经网络 rbf神经网络
在线阅读 下载PDF
电价的混沌特性分析及其预测模型研究 被引量:57
19
作者 杨洪明 段献忠 《电网技术》 EI CSCD 北大核心 2004年第3期59-64,共6页
在电力市场环境下,电价取决于众多因素的共同作用,它的演化过程呈十分复杂的不规则运动。为了揭示这种貌似随机的演化过程的内在规律,作者首先借助混沌理论,对电价的混沌特性进行了验证。在由电价单变量时间序列重构的相空间上,提取了... 在电力市场环境下,电价取决于众多因素的共同作用,它的演化过程呈十分复杂的不规则运动。为了揭示这种貌似随机的演化过程的内在规律,作者首先借助混沌理论,对电价的混沌特性进行了验证。在由电价单变量时间序列重构的相空间上,提取了吸引子的分形维数和Lyapunov指数,表明电价具有混沌特性;并且通过替代数据检验法进一步验证了电价的这种混沌行为,从而为借助混沌理论来进行电价的短期预测提供了依据。然后,采用电价及其相关因素构成的多变量时间序列重构了更为准确的相空间,通过跟踪相空间中相邻相点的演化趋势,建立起基于递归神经网络的全局和局域电价预测模型,并对NewEngland市场的电价进行了成功的预测。 展开更多
关键词 电力系统 输电网 电价 混沌特性分析 预测模型 电力市场
在线阅读 下载PDF
基于混沌神经网络的交通流预测算法 被引量:6
20
作者 胡家兴 陈燕 张立东 《济南大学学报(自然科学版)》 CAS 北大核心 2012年第2期152-155,共4页
为提高RBF神经网络的交通流预测精度,提出基于混沌-RBF(Chaos-RBF,C-RBF)神经网络的交通流预测算法,该算法首先计算混沌相空间的嵌入维数和嵌入延迟,构造得到的相空间向量作为RBF神经网络的输入,其相空间次邻向量作为期望输出值,滚动训... 为提高RBF神经网络的交通流预测精度,提出基于混沌-RBF(Chaos-RBF,C-RBF)神经网络的交通流预测算法,该算法首先计算混沌相空间的嵌入维数和嵌入延迟,构造得到的相空间向量作为RBF神经网络的输入,其相空间次邻向量作为期望输出值,滚动训练得到神经网络的权值,然后以实际交通流作为输入,经由网络计算得到预测值。仿真结果表明该算法相比于RBF神经网络,预测精度提高96%,证明了该算法的有效性。 展开更多
关键词 rbf神经网络 智能交通 交通流预测 混沌理论
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部