Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法...在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法,称为WLV-K-means(weighted local variance K-means)。该算法采用加权局部方差度量样本的密度,以更好地发现密度高的样本,并利用改进的最大最小法,启发式地选择簇初始中心点。在UCI数据集上的实验结果表明,WLV-K-means算法不仅能够取得较好的聚类结果,而且受参数变化的影响较小,有更加稳定的表现。展开更多
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金partially supported by the National Natural Science Foundation of China (Grant Nos.71671104,11971301)the Project of Humanities Social Sciences of Research of the Ministry of Education,China (Grant No.16YJA910003)。
文摘在传统K-means算法中,初始簇中心选择的随机性,导致聚类结果随不同的聚类中心而不同。因此出现了很多簇中心的选择方法,但是很多已有的簇中心选择算法,其聚类结果受参数调节的影响较大。针对这一问题,提出了一种新的初始簇中心选择算法,称为WLV-K-means(weighted local variance K-means)。该算法采用加权局部方差度量样本的密度,以更好地发现密度高的样本,并利用改进的最大最小法,启发式地选择簇初始中心点。在UCI数据集上的实验结果表明,WLV-K-means算法不仅能够取得较好的聚类结果,而且受参数变化的影响较小,有更加稳定的表现。