期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于数据处理与若干群体算法优化的GRU/LSTM水质时间序列预测 被引量:6
1
作者 杨坪宏 胡奥 +1 位作者 崔东文 杨杰 《水资源与水工程学报》 CSCD 北大核心 2023年第4期45-53,共9页
为提高水质时间序列预测精度,提出一种基于小波包变换(WPT)和变色龙优化算法(CSA)、猎豹优化(CO)算法和山瞪羚优化(MGO)算法的优化门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)的预测模型。首先利用WPT对pH值、DO、COD_(Mn)、NH_(3... 为提高水质时间序列预测精度,提出一种基于小波包变换(WPT)和变色龙优化算法(CSA)、猎豹优化(CO)算法和山瞪羚优化(MGO)算法的优化门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)的预测模型。首先利用WPT对pH值、DO、COD_(Mn)、NH_(3)-N时间序列进行平稳化处理,得到若干个规律性较强的子序列分量;其次简要介绍了CSA、CO、MGO算法原理,利用CSA、CO、MGO分别寻优GRU、LSTM超参数,建立WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU、WPT-CSA-LSTM、WPT-CO-LSTM、WPT-MGO-LSTM模型;最后利用所建立的模型对pH值及DO、COD_(Mn)、NH_(3)-N浓度各分量进行预测和重构,并建立WPT-GRU、WPT-LSTM和WPT-CSA-SVM、WPT-CO-SVM、WPT-MGO-SVM模型作对比分析模型,以云南省昆明市观音山断面为例,通过pH值及DO、COD_(Mn)、NH_(3)-N浓度预测对模型进行了验证。结果表明:WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU、WPT-CSA-LSTM、WPT-CO-LSTM、WPT-MGO-LSTM模型对实例pH值及DO、COD_(Mn)、NH_(3)-N浓度的预测精度优于其他对比模型,具有较好的预测效果,其中尤以WPT-CSA-GRU、WPT-CO-GRU、WPT-MGO-GRU模型的预测精度最高;CSA、CO、MGO能有效调优GRU、LSTM超参数,显著提高GRU、LSTM预测性能;所构建的6种模型预测精度高且计算规模小,是有效的水质时间序列预测模型,可为相关水质预测研究提供参考。 展开更多
关键词 水质预测 门限循环控制单元 长短期记忆神经网络 小波包变换 变色龙优化算法 猎豹优化算法 山瞪羚优化算法
在线阅读 下载PDF
战争策略算法与变色龙算法优化极限学习机的输沙量时间序列预测 被引量:9
2
作者 许建伟 崔东文 《水力发电》 CAS 2022年第11期36-42,共7页
以云南省龙潭寨汛期与枯期输沙量时间序列预测为例,建立战争策略优化(WSO)算法、变色龙群算法(CSA)与极限学习机(ELM)相融合的组合模型。首先,在不同维度下选取4个基准函数对WSO、CSA进行仿真测试;其次,利用2层WPT将实例汛期与枯期输沙... 以云南省龙潭寨汛期与枯期输沙量时间序列预测为例,建立战争策略优化(WSO)算法、变色龙群算法(CSA)与极限学习机(ELM)相融合的组合模型。首先,在不同维度下选取4个基准函数对WSO、CSA进行仿真测试;其次,利用2层WPT将实例汛期与枯期输沙量时序数据分解为4个更具规律的子序列分量;最后,通过各分量训练样本构建ELM适应度函数,利用WSO、CSA对适应度函数进行寻优,利用寻优获得的最佳ELM超参数建立WPT-WSO-ELM、WPT-CSA-ELM模型对各子序列分量进行预测。将预测结果加和重构得到最终预测结果,并构建WPT-ELM模型及基于小波变换(WT)的WT-WSO-ELM、WT-CSA-ELM、WT-ELM模型作对比分析。对于基准函数及ELM适应度函数,WSO寻优效果优于CSA,具有较好的寻优精度及全局搜索能力;对汛期与枯期输沙量预测WPT-WSO-ELM模型预测精度优于WPT-CSA-ELM、WT-WSO-ELM、WT-CSA-ELM模型。 展开更多
关键词 输沙量预测 极限学习机 战争策略优化算法 变色龙群算法 小波包变换 仿真测试
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部