The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils ...The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.展开更多
The tensile strength,compressive strength and electrical resistivity of TiB2/C composite cathode coating were measured with a hydraulic pressure universal test machine and an electrical resistivity test device,and the...The tensile strength,compressive strength and electrical resistivity of TiB2/C composite cathode coating were measured with a hydraulic pressure universal test machine and an electrical resistivity test device,and the effects of carbon fibre content and carbon fibre length on tensile strength,compressive strength and electrical resistivity were investigated.The results show that the tensile strength of coating increases at the beginning and then reduces with the increase of carbon fibre content when the carbon fibre(length of 3 mm)content ranges from 0 to 4.0%;at the carbon fibre content of 1.5%,the tensile strength of coating reaches the maximum,25.6 MPa.For the coating with carbon fibre content of 1.5%,the carbon fibre length has a great influence on tensile strength and compressive strength of coating;when the carbon fibre length is 6 mm,the tensile strength and compressive strength of coating reach the maximum,27.6 MPa and 39.2 MPa,respectively.The electrical resistivity of coating reduces with the rise of temperature and the length of carbon fibre,and the influence of carbon fibre length on electrical resistivity of coating at low temperature(30-200℃)is more obvious than that at high temperature(960℃).展开更多
To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water content...To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.展开更多
基金Project(BK2011618) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(51108288) supported by the National Natural Science Foundation of China
文摘The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.
基金Project(2005CB623703)supported by the Major State Basic Research Development Program of China
文摘The tensile strength,compressive strength and electrical resistivity of TiB2/C composite cathode coating were measured with a hydraulic pressure universal test machine and an electrical resistivity test device,and the effects of carbon fibre content and carbon fibre length on tensile strength,compressive strength and electrical resistivity were investigated.The results show that the tensile strength of coating increases at the beginning and then reduces with the increase of carbon fibre content when the carbon fibre(length of 3 mm)content ranges from 0 to 4.0%;at the carbon fibre content of 1.5%,the tensile strength of coating reaches the maximum,25.6 MPa.For the coating with carbon fibre content of 1.5%,the carbon fibre length has a great influence on tensile strength and compressive strength of coating;when the carbon fibre length is 6 mm,the tensile strength and compressive strength of coating reach the maximum,27.6 MPa and 39.2 MPa,respectively.The electrical resistivity of coating reduces with the rise of temperature and the length of carbon fibre,and the influence of carbon fibre length on electrical resistivity of coating at low temperature(30-200℃)is more obvious than that at high temperature(960℃).
基金Project(2016ZGHJ/XZHTL-YQSC-26)supported by the Key Scientific Research Project of China Gold GroupProject(SQ2019QZKK2806)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,China+1 种基金Project(300102268716)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LHKA-G201701)supported by the Science and Technology Project of Yalong River Hydropower Development Company,China。
文摘To evaluate the geotechnical properties of coarse-grained soil affected by cyclic freeze-thaw,the electrical resistivity and mechanical tests are conducted.The soil specimens are prepared under different water contents,dry densities and exposed to 0?20 freeze-thaw cycles.As a result,the stress?strain behavior of the specimen(w=14.0%andρd=1.90 g/cm^3)changes from strain-hardening into strain-softening due to the freeze-thaw effect.The electrical resistivity of test specimen increases with the freeze-thaw cycles change,but the mechanical parameters(the unconfined compressive strength qu and the deformation modulus E)and brittleness index decrease considerably at the same conditions.All of them tend to be stable after 7?9 cycles.Moreover,both the dry density and the water content have reciprocal effects on the freeze-thaw actions.The failure and pore characteristics of specimens affected by freeze-thaw cycles are discussed by using the image analysis method.Then,an exponential function equation is developed to assess the electrical resistivity of specimens affected by the cyclic freeze-thaw.Linear relations between the mechanical parameters and the electrical resistivity of specimens are established to evaluate the geotechnical properties of the soil exposed to freeze-thaw actions through the corresponding electrical resistivity.