A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
The autonomous "celestial navigation scheme" for deep space probe departing from the earth and the autonomous "optical navigation scheme" for encountering object celestial body are presented. Then,...The autonomous "celestial navigation scheme" for deep space probe departing from the earth and the autonomous "optical navigation scheme" for encountering object celestial body are presented. Then, aiming at the conditions that large initial estimation errors and non-Gaussian distribution of state or measurement errors may exist in orbit determination process of the two phases, UPF (unscented particle filter) is introduced into the navigation schemes. By tackling nonlinear and non-Gaussian problems, UPF overcomes the accuracy influence brought by the traditional EKF (extended Kalman filter), UKF (unscented Kalman filter), and PF (particle filter) schemes in approximate treatment to nonlinear and non-Gaussian state model and measurement model. The numerical simulations demonstrate the feasibility and higher accuracy of the UPF navigation scheme.展开更多
In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system) integrated navigation method based on federated unscented Kalman filter(UKF) is proposed.The celestia...In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system) integrated navigation method based on federated unscented Kalman filter(UKF) is proposed.The celestial navigation is a mature and stable navigation method.However,its position determination performance is not satisfied due to the low accuracy of horizon sensor.Single pulsar navigation is a new navigation method,which can provide highly accurate range measurements.The major drawback of single pulsar navigation is that the system is completely unobservable.As two methods are complementary to each other,the federated UKF is used here for fusing the navigation data from single pulsar navigation and CNS.Compared to the traditional celestial navigation method and single pulsar navigation,the integrated navigation method can provide better navigation performance.The simulation results demonstrate the feasibility and effectiveness of the navigation method.展开更多
In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used ...In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used to obtain high-precision navigation information. INS propagates position, velocity and attitude by integration of sensed accelerations, so initial alignment is needed before INS can work properly. However, traditional ground-based initial alignment methods cannot work well on the lunar surface because of its low rotation rate (0.55°/h). For solving this problem, a new autonomous INS initial alignment method assisted by celestial observations is proposed, which uses star observations to help INS estimate its attitude, gyroscopes drifts and accelerometer biases. Simulations show that this new method can not only speed up alignment, but also improve the alignment accuracy. Furthermore, the impact factors such as initial conditions, accuracy of INS sensors, and accuracy of star sensor on alignment accuracy are analyzed in details, which provide guidance for the engineering applications of this method. This method could be a promising and attractive solution for lunar explorer's initial alignment.展开更多
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
基金the National "863" High Technology Development Project of China (2005AA735080).
文摘The autonomous "celestial navigation scheme" for deep space probe departing from the earth and the autonomous "optical navigation scheme" for encountering object celestial body are presented. Then, aiming at the conditions that large initial estimation errors and non-Gaussian distribution of state or measurement errors may exist in orbit determination process of the two phases, UPF (unscented particle filter) is introduced into the navigation schemes. By tackling nonlinear and non-Gaussian problems, UPF overcomes the accuracy influence brought by the traditional EKF (extended Kalman filter), UKF (unscented Kalman filter), and PF (particle filter) schemes in approximate treatment to nonlinear and non-Gaussian state model and measurement model. The numerical simulations demonstrate the feasibility and higher accuracy of the UPF navigation scheme.
基金supported by the National High Technology Research and Development Program of China(2006AAJ109)Aviation Science Fund(20070818001)
文摘In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system) integrated navigation method based on federated unscented Kalman filter(UKF) is proposed.The celestial navigation is a mature and stable navigation method.However,its position determination performance is not satisfied due to the low accuracy of horizon sensor.Single pulsar navigation is a new navigation method,which can provide highly accurate range measurements.The major drawback of single pulsar navigation is that the system is completely unobservable.As two methods are complementary to each other,the federated UKF is used here for fusing the navigation data from single pulsar navigation and CNS.Compared to the traditional celestial navigation method and single pulsar navigation,the integrated navigation method can provide better navigation performance.The simulation results demonstrate the feasibility and effectiveness of the navigation method.
基金supported by the National Natural Science Foundation of China(61233005)the Program for New Century Excellent Talents in University(NCET-11-0771)the Aerospace Science and Technology Innovation Fund(10300002012117003)
文摘In the future lunar exploration programs of China, soft landing, sampling and returning will be realized. For lunar explorers such as Rovers, Landers and Ascenders, the inertial navigation system (INS) will be used to obtain high-precision navigation information. INS propagates position, velocity and attitude by integration of sensed accelerations, so initial alignment is needed before INS can work properly. However, traditional ground-based initial alignment methods cannot work well on the lunar surface because of its low rotation rate (0.55°/h). For solving this problem, a new autonomous INS initial alignment method assisted by celestial observations is proposed, which uses star observations to help INS estimate its attitude, gyroscopes drifts and accelerometer biases. Simulations show that this new method can not only speed up alignment, but also improve the alignment accuracy. Furthermore, the impact factors such as initial conditions, accuracy of INS sensors, and accuracy of star sensor on alignment accuracy are analyzed in details, which provide guidance for the engineering applications of this method. This method could be a promising and attractive solution for lunar explorer's initial alignment.