This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorit...This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.展开更多
For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform ...For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.展开更多
In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages....In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.展开更多
Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO ...Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO estimator based on the Bayesian philosophy is proposed. Also, it is shown that the Bayesian IFO estimator is optimal among all the IFO estimators. Furthermore, the Bayesian estimator can take advantage of oversampling so that better performance can be obtained. Finally, numerical results show the optimality of the Bayesian estimator and validate the theoretical analysis.展开更多
Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window,...Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.展开更多
为提高频控阵-多输入多输出(frequency diverse array multiple-input and multiple-output,FDA-MIMO)雷达系统的抗干扰能力,提出一种基于双子脉冲模式的FDA-MIMO雷达接收滤波器-发射频偏联合优化设计方法。在传统脉冲的基础上,引入双...为提高频控阵-多输入多输出(frequency diverse array multiple-input and multiple-output,FDA-MIMO)雷达系统的抗干扰能力,提出一种基于双子脉冲模式的FDA-MIMO雷达接收滤波器-发射频偏联合优化设计方法。在传统脉冲的基础上,引入双子脉冲发射模式并建立相关信号模型。在此基础上,建立以最大信干噪比(signal-to-interference-plus-noise ratio,SINR)为准则的接收滤波器-发射频偏联合优化问题。为了得到最优的接收-发射滤波器设计方案,引入一种迭代优化算法,将该优化问题拆分为接收滤波器优化和发射频偏优化两个独立的子问题。为进一步完成对发射频偏的设计,将其转化为关于发射导向矢量的设计问题,采用半正定松弛和随机方法,并通过发射导向矢量和频偏的数学关系获得频偏的最终设计方案。最后,通过仿真实验验证了所提双子脉冲FDA-MIMO雷达模式和接收滤波器-发射频偏联合优化设计方法对提高雷达系统抗干扰能力的有效性。展开更多
An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is di...An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.展开更多
基金supported by the National Natural Science Foundation of China(60872026)the Natural Science Foundation of Tianjin(09JCZDJC16900)
文摘This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.
基金supported by the National Natural Science Foundation of China(60672047).
文摘For multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, a joint timing synchronization and frequency offset acquisition algorithm based on fractional Fourier transform (FRFT) is proposed. The linear frequency modulation signals superimposed on the data signals are used as the training signals. By performing FRFT on the received signals and searching the peak value of the FRFT results, the receiver can realize timing synchronization and frequency offset acquisition simultaneously. Compared with the existing methods, the proposed algorithm can provide better timing synchronization performance and larger frequency offset acquisition range even under multi-path channels with low signal to noise ratio. Theoretical analysis and simulation results prove this point.
基金Project(60532030) supported by the National Natural Science Foundation of China
文摘In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.
基金supported by the National Science Fund for Distinguished Young Scholars (60725105)National"863"Program of China (2007AA01Z288)+1 种基金the sixth project of the Key Project of National Nature Science Foundation of China (60496316)Teaching Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE,the 111 Project (B08038).
文摘Carrier frequency offset (CFO) in MIMO-OFDM systems can be decoupled into two parts: fraction frequency offset (FFO) and integer frequency offset (IFO). The problem of IFO estimation is addressed and a new IFO estimator based on the Bayesian philosophy is proposed. Also, it is shown that the Bayesian IFO estimator is optimal among all the IFO estimators. Furthermore, the Bayesian estimator can take advantage of oversampling so that better performance can be obtained. Finally, numerical results show the optimality of the Bayesian estimator and validate the theoretical analysis.
基金supported by the National Natural Science Foundation of China(6130110561102069)+2 种基金the China Postdoctoral Science Foundation Funded Project(2013M531351)the Nanjing University of Aeronautics and Astronautics Founding(NN2012022)the Open Fund of Graduate Innovated Base(Laboratory)for the Nanjing University of Aeronautics and Astronautics(KFJJ120219)
文摘Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.
文摘为提高频控阵-多输入多输出(frequency diverse array multiple-input and multiple-output,FDA-MIMO)雷达系统的抗干扰能力,提出一种基于双子脉冲模式的FDA-MIMO雷达接收滤波器-发射频偏联合优化设计方法。在传统脉冲的基础上,引入双子脉冲发射模式并建立相关信号模型。在此基础上,建立以最大信干噪比(signal-to-interference-plus-noise ratio,SINR)为准则的接收滤波器-发射频偏联合优化问题。为了得到最优的接收-发射滤波器设计方案,引入一种迭代优化算法,将该优化问题拆分为接收滤波器优化和发射频偏优化两个独立的子问题。为进一步完成对发射频偏的设计,将其转化为关于发射导向矢量的设计问题,采用半正定松弛和随机方法,并通过发射导向矢量和频偏的数学关系获得频偏的最终设计方案。最后,通过仿真实验验证了所提双子脉冲FDA-MIMO雷达模式和接收滤波器-发射频偏联合优化设计方法对提高雷达系统抗干扰能力的有效性。
基金supported by the National Natural Science Foundation of China (60972072)the National Science and Technology Major Projects: the New Generation Broadband Wireless Mobile Communication Network (2009ZX03003-03)the "111 Project" of China (B08038)
文摘An adaptive algorithm named low complexity phase off- set estimation (LC-POE) is proposed for orthogonal frequency division multiplexing (OFDM) signals. Depending on the requirement, the estimation procedure is divided into several scales to accelerate the adaptive convergence speed and ensure the estimation accuracy. The true phase offset is estimated through shrinking the detection range and raising the resolution scale step by step. Both the convergence performance and complexity are discussed in the paper. Simulation results show the effectiveness of the proposed algorithm. The LC-POE algorithm is promising in the application of OFDM systems.