This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorit...This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.展开更多
Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window,...Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.展开更多
This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the...This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,展开更多
针对时频双选衰落信道下基于交错正交幅度调制的正交频分复用(orthogonal frequency division multiplexing with offset quadrature amplitude modulation,OFDM/OQAM)系统的频率同步问题,将双选信道建模为复指数基扩展模型,证明了存在...针对时频双选衰落信道下基于交错正交幅度调制的正交频分复用(orthogonal frequency division multiplexing with offset quadrature amplitude modulation,OFDM/OQAM)系统的频率同步问题,将双选信道建模为复指数基扩展模型,证明了存在载波频偏情况下OFDM/OQAM接收信号的二阶循环平稳特性,在此基础上,提出一种OFDM/OQAM系统载波频率偏差的盲估计算法。理论分析和仿真结果表明由该方法构造的估计器不仅能够有效地抵抗双选信道引起的衰落而且具有很好的抗噪性能,从而可以实现对载波频偏的稳健估计。展开更多
基金supported by the National Natural Science Foundation of China(60872026)the Natural Science Foundation of Tianjin(09JCZDJC16900)
文摘This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.
基金supported by the National Natural Science Foundation of China(6130110561102069)+2 种基金the China Postdoctoral Science Foundation Funded Project(2013M531351)the Nanjing University of Aeronautics and Astronautics Founding(NN2012022)the Open Fund of Graduate Innovated Base(Laboratory)for the Nanjing University of Aeronautics and Astronautics(KFJJ120219)
文摘Frame and frequency synchronization are essential for orthogonal frequency division multiplexing (OFDM) systems. The frame offset owing to incorrect start point position of the fast Fourier transform (FFT) window, and the carrier frequency offset (CFO) due to Doppler frequency shift or the frequency mismatch between the transmitter and receiver oscil ators, can bring severe inter-symbol interference (ISI) and inter-carrier interference (ICI) for the OFDM system. Relying on the relatively good correlation charac-teristic of the pseudo-noise (PN) sequence, a joint frame offset and normalized CFO estimation algorithm based on PN preamble in time domain is developed to realize the frame and frequency synchronization in the OFDM system. By comparison, the perfor-mances of the traditional algorithm and the improved algorithm are simulated under different conditions. The results indicate that the PN preamble based algorithm both in frame offset estimation and CFO estimation is more accurate, resource-saving and robust even under poor channel condition, such as low signal-to-noise ratio (SNR) and large normalized CFO.
基金supported by the National Natural Science Foundation of China (60801052)the Aeronautical Science Foundation of China(2009ZC52036)+1 种基金Nanjing University of Aeronautics and Astronautics Research Funding (NS2012010 NP2011036)
文摘This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,
文摘针对时频双选衰落信道下基于交错正交幅度调制的正交频分复用(orthogonal frequency division multiplexing with offset quadrature amplitude modulation,OFDM/OQAM)系统的频率同步问题,将双选信道建模为复指数基扩展模型,证明了存在载波频偏情况下OFDM/OQAM接收信号的二阶循环平稳特性,在此基础上,提出一种OFDM/OQAM系统载波频率偏差的盲估计算法。理论分析和仿真结果表明由该方法构造的估计器不仅能够有效地抵抗双选信道引起的衰落而且具有很好的抗噪性能,从而可以实现对载波频偏的稳健估计。