Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area...Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area through multistep phase transformation of aluminum-bearing substances using intermediate dawsonite as a template.Thermodynamic calculations and experimental results show that increasing the concentration of Na_(2)CO_(3) and(NH_(4))_(2)CO_(3) is remarkably beneficial to the formation of dawsonite and ammonium aluminum carbonate hydroxide,respectively.Based on determination of dissolution and precipitation mechanism,the ultrafine granular gibbsite is converted to the uniform fibrous dawsonite with a ratio of length to diameter over 50,and the fibrous dawsonite changes into the long fibrous ammonium aluminum carbonate hydroxide with a ratio of length to diameter is about 80 in above 70 g/L(NH_(4))_(2)CO_(3) solution.Furthermore,the activated alumina remains fibrous morphology after roasting ammonium aluminum carbonate hydroxide at a slow heating rate,plentiful open mesopore and weak aggregation of particles,which contributes to the high specific surface area of 159.37 m^(2)/g at 1273 K for the activated alumina.The complete transformation of dawsonite to ammonium aluminum carbonate hydroxide and high specific surface area contribute to the purity of the activated fibrous alumina above 99.9%with low Na and Fe content.展开更多
Cristobalite aluminum phosphate (C-AlPO_4) coatings were prepared by a hydrothermal electrophoretic deposition process on SiC-coated C/C composites. Phase compositions and microstructures of the as-prepared coatings w...Cristobalite aluminum phosphate (C-AlPO_4) coatings were prepared by a hydrothermal electrophoretic deposition process on SiC-coated C/C composites. Phase compositions and microstructures of the as-prepared coatings were characterized by XRD and SEM analyses. The influence of deposition voltage on the phase, microstructure and antioxidation property of the cristobalite aluminum phosphate coatings was investigated. Results show that the as-prepared coatings are composed of cristobalite aluminum phosphate crystallites. The thickness and density of cristobalite aluminum phosphate coatings are improved with the increase of deposition voltage. The deposition amount and bonding strength of the cristobalite aluminum phosphate coatings also increase with the increase of deposition voltage. The deposition mass per unit area of the coatings and the square root of the deposition time at different hydrothermal voltages satisfy linear relationship. The antioxidation property of the coated C/C composites is improved with the increase of deposition voltage. Compared with SiC coatings prepared by pack cementation, the multilayer coatings prepared by pack cementation with a later hydrothermal electrophoretic deposition process exhibit better antioxidation property. The as-prepared multi-coatings can effectively protect C/C composites from oxidation in air at 1 773 K for 37 h with a mass loss rate of 0.53%.展开更多
基金Project(51874372)supported by the National Natural Science Foundation of China。
文摘Fibrous activated alumina is widely applied in catalysts,adsorbents,and composite materials.This work presents a green approach in preparing the fibrous activated Al_(2)O_(3) with high purity and specific surface area through multistep phase transformation of aluminum-bearing substances using intermediate dawsonite as a template.Thermodynamic calculations and experimental results show that increasing the concentration of Na_(2)CO_(3) and(NH_(4))_(2)CO_(3) is remarkably beneficial to the formation of dawsonite and ammonium aluminum carbonate hydroxide,respectively.Based on determination of dissolution and precipitation mechanism,the ultrafine granular gibbsite is converted to the uniform fibrous dawsonite with a ratio of length to diameter over 50,and the fibrous dawsonite changes into the long fibrous ammonium aluminum carbonate hydroxide with a ratio of length to diameter is about 80 in above 70 g/L(NH_(4))_(2)CO_(3) solution.Furthermore,the activated alumina remains fibrous morphology after roasting ammonium aluminum carbonate hydroxide at a slow heating rate,plentiful open mesopore and weak aggregation of particles,which contributes to the high specific surface area of 159.37 m^(2)/g at 1273 K for the activated alumina.The complete transformation of dawsonite to ammonium aluminum carbonate hydroxide and high specific surface area contribute to the purity of the activated fibrous alumina above 99.9%with low Na and Fe content.
基金Project(50772063) supported by the National Natural Science Foundation of China Project(NCET-06-0893) supported by the Foundation of New Century Excellent Talent in University of China+2 种基金 Project(20070708001) supported by the Doctorate Foundation of Ministry of Education of China Project(SJ08-ZT05) supported by the Natural Science Foundation of Shaanxi Province, ChinaProject supported by the Graduate Innovation Fund of Shaanxi University of Science and Technology, China
文摘Cristobalite aluminum phosphate (C-AlPO_4) coatings were prepared by a hydrothermal electrophoretic deposition process on SiC-coated C/C composites. Phase compositions and microstructures of the as-prepared coatings were characterized by XRD and SEM analyses. The influence of deposition voltage on the phase, microstructure and antioxidation property of the cristobalite aluminum phosphate coatings was investigated. Results show that the as-prepared coatings are composed of cristobalite aluminum phosphate crystallites. The thickness and density of cristobalite aluminum phosphate coatings are improved with the increase of deposition voltage. The deposition amount and bonding strength of the cristobalite aluminum phosphate coatings also increase with the increase of deposition voltage. The deposition mass per unit area of the coatings and the square root of the deposition time at different hydrothermal voltages satisfy linear relationship. The antioxidation property of the coated C/C composites is improved with the increase of deposition voltage. Compared with SiC coatings prepared by pack cementation, the multilayer coatings prepared by pack cementation with a later hydrothermal electrophoretic deposition process exhibit better antioxidation property. The as-prepared multi-coatings can effectively protect C/C composites from oxidation in air at 1 773 K for 37 h with a mass loss rate of 0.53%.