期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Carbon Dots-Modified Hollow Mesoporous Photonic Crystal Materials for Sensitivityand Selectivity-Enhanced Sensing of Chloroform Vapor
1
作者 Junchen Liu Ji Liu +9 位作者 Zhipeng Li Liupeng Zhao Tianshuang Wang Xu Yan Fangmeng Liu Xiaomin Li Qin Li Peng Sun Geyu Lu Dongyuan Zhao 《Nano-Micro Letters》 2025年第4期381-398,共18页
Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers,because of their potential harm to the respiratory system,nervous system,skin,and eyes.However,resear... Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers,because of their potential harm to the respiratory system,nervous system,skin,and eyes.However,research on chloroform vapor sensing is still in its early stages,primarily due to the lack of specific recognition motif.Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor(HMSS@CDs-PCs)for enhanced chloroform sensing.The colloidal PC packed with hollow mesoporous silica spheres provides an interconnected ordered macro-meso-hierarchical porous structure,ideal for rapid gas sensing utilizing the photonic bandgap shift as the readout signal.The as-synthesized CDs with pyridinic-N-oxide functional groups adsorbed in the hollow mesoporous silica spheres are found to not only serve as the chloroform adsorption sites,but also a molecular glue that prevents crack formation in the colloidal PC.The sensitivity of HMSS@CDs-PCs sensor is 0.79 nm ppm^(-1)and an impressively low limit of detection is 3.22 ppm,which are the best reported values in fast-response chloroform vapor sensor without multi-signal assistance.The positive response time is 7.5 s and the negative response time 9 s.Furthermore,relatively stable sensing can be maintained within a relative humidity of 20%-85%RH and temperature of 25-55℃.This study demonstrates that HMSS@CDs-PCs sensors have practical application potential in indoor and outdoor chloroform vapor detection. 展开更多
关键词 carbon dots Photonic crystal sensors Sensitivity-enhanced sensing Selectivity-enhanced sensing Chloroform vapor sensing
在线阅读 下载PDF
Accelerating H^(*)desorption of hollow Mo_(2)C nanoreactor via in-situ grown carbon dots for electrocatalytic hydrogen evolution
2
作者 Mengmeng Liu Yuanyuan Jiang +3 位作者 Zhuwei Cao Lulu Liu Hong Chen Sheng Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期464-471,共8页
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv... Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds. 展开更多
关键词 Mo_(2)C nanoreactor carbon dots H^(*)desorption Electrocatalytic hydrogen evolution
在线阅读 下载PDF
Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes 被引量:13
3
作者 Zhi Yang Zhaohui Li +6 位作者 Minghan Xu Yujie Ma Jing Zhang Yanjie Su Feng Gao Hao Wei Liying Zhang 《Nano-Micro Letters》 SCIE EI CAS 2013年第4期247-259,共13页
Carbon dots(CDs), as a new member of carbon nanomaterial family, have aroused great interest since their discovery in 2004. Because of their outstanding water solubility, high sensitivity and selectivity to target ana... Carbon dots(CDs), as a new member of carbon nanomaterial family, have aroused great interest since their discovery in 2004. Because of their outstanding water solubility, high sensitivity and selectivity to target analytes, low toxicity, favorable biocompatibility, and excellent photostability, researchers from diverse disciplines have come together to further develop the fundamental properties of CDs. Many methods for the production of CDs have been reported, therein, hydrothermal and solvothermal technology needs simple equipments, and microwave synthesis needs less reaction time, hence these methods become current common synthesis methods, in which many precursors have been applied to produce CDs. Due to their excellent fluorescence, CDs have made impressive strides in sensitivity and selectivity to a diverse array of salt ions,organic/biological molecules and target gases. The development of CDs as nanoprobes is still in its infancy, but continued progress may lead to their integration into environmental and biological applications. Hydrothermal,solvothermal, and microwave synthesis of fluorescent carbon dots and their detection applications as nanoprobes in salt ions, organic/biological molecules, and target gases will be reviewed. 展开更多
关键词 carbon dots HYDROTHERMAL SOLVOTHERMAL Microwave NANOPROBE
在线阅读 下载PDF
Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications 被引量:12
4
作者 Kok Ken Chan Stephanie Hui Kit Yap Ken-Tye Yong 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期268-313,共46页
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent pho... Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties,as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them.Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers,nitroaromatic explosives, pollutants, vitamins, and drugs.Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing. 展开更多
关键词 carbon dots Heavy metal sensing Photoluminescence mechanism Sensing mechanism Sensor design
在线阅读 下载PDF
Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout 被引量:11
5
作者 Yuci Wang Kai Jiang +4 位作者 Jiaren Du Licheng Zheng Yike Li Zhongjun Li Hengwei Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期148-162,共15页
Near-infrared(NIR),particularly NIR-containing dual-/multimode afterglow,is very attractive in many fields of application,but it is still a great challenge to achieve such property of materials. Herein,we report a fac... Near-infrared(NIR),particularly NIR-containing dual-/multimode afterglow,is very attractive in many fields of application,but it is still a great challenge to achieve such property of materials. Herein,we report a facile method to prepare green and NIR dual-mode afterglow of carbon dots(CDs) through in situ embedding o-CDs(being prepared from o-phenylenediamine) into cyanuric acid(CA) matrix(named o-CDs@CA). Further studies reveal that the green and NIR afterglows of o-CDs@CA originate from thermal activated delayed fluorescence(TADF) and room temperature phosphorescence(RTP) of o-CDs,respectively. In addition,the formation of covalent bonds between o-CDs and CA,and the presence of multiple fixation and rigid e ects to the triplet states of o-CDs are confirmed to be critical for activating the observed dual-mode afterglow. Due to the shorter lifetime and insensitiveness to human vision of the NIR RTP of o-CDs@CA,it is completely covered by the green TADF during directly observing. The NIR RTP signal,however,can be readily captured if an optical filter(cut-o wavelength of 600 nm) being used. By utilizing these unique features,the applications of o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally,the as-developed method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances. 展开更多
关键词 carbon dots Dual-mode afterglow Room temperature phosphorescence Thermal activated delayed fluorescence Information security
在线阅读 下载PDF
Interface electron collaborative migration of Co–Co3O4/carbon dots:Boosting the hydrolytic dehydrogenation of ammonia borane 被引量:9
6
作者 Han Wu Min Wu +5 位作者 Boyang Wang Xue Yong Yushan Liu Baojun Li Baozhong Liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期43-53,I0002,共12页
Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we re... Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate. 展开更多
关键词 Ammonia borane Hydrogen evolution Co-Co3O4 interface carbon dots Nanoparticles
在线阅读 下载PDF
Natural Stibnite for Lithium‑/Sodium‑Ion Batteries:Carbon Dots Evoked High Initial Coulombic Efficiency 被引量:6
7
作者 Yinger Xiang Laiqiang Xu +7 位作者 Li Yang Yu Ye Zhaofei Ge Jiae Wu Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期208-228,共21页
The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural ... The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural stibnite modified by carbon dots(Sb_(2)S_(3)@xCDs)is elaborately designed with high ICE.Greatly,chemical processes of local oxidation–partial reduction–deep coupling for stibnite reduction of CDs are clearly demonstrated,confirmed with in situ high-temperature X-ray diffraction.More impressively,the ICE for lithium-ion batteries(LIBs)is enhanced to 85%,through the effect of oxygen-rich carbon matrix on C–S bonds which inhibit the conversion of sulfur to sulfite,well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations.Not than less,it is found that Sb–O–C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation.As a result,the optimal sample delivers a tremendous reversible capacity of 660 mAh g^(−1)in LIBs at a high current rate of 5 A g^(−1).This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides,especially for improving the ICE. 展开更多
关键词 carbon dots Sb_(2)S_(3) Initial Coulombic efficiency Interfacial bond ANODE
在线阅读 下载PDF
Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation 被引量:5
8
作者 Jie Wu Yunjie Zhou +6 位作者 Haodong Nie Kaiqiang Wei Hui Huang Fan Liao Yang Liu Mingwang Shao Zhenhui Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期61-67,I0003,共8页
The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(P... The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design. 展开更多
关键词 Pt-based alloys carbon dots Interface electron transfer Interface catalytic kinetics Hydrogen oxidation reaction
在线阅读 下载PDF
NH_(3)‑Induced In Situ Etching Strategy Derived 3D‑Interconnected Porous MXene/Carbon Dots Films for High Performance Flexible Supercapacitors 被引量:4
9
作者 Yongbin Wang Ningjun Chen +6 位作者 Bin Zhou Xuefeng Zhou Ben Pu Jia Bai Qi Tang Yan Liu Weiqing Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期271-282,共12页
2D MXene(Ti_(3)CNT_(x))has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity,ultra-high capacitance,and excellent flexibility.However,it suffers f... 2D MXene(Ti_(3)CNT_(x))has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity,ultra-high capacitance,and excellent flexibility.However,it suffers from a severe restacking problem during the electrode fabrication process,limiting the ion transport kinetics and the accessibility of ions in the electrodes,especially in the direction normal to the electrode surface.Herein,we report a NH_(3)-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots(p-MC)films for high-performance flexible supercapacitor.The pre-intercalated carbon dots(CDs)first prevent the restacking of MXene to expose more inner electrochemical active sites.The partially decomposed CDs generate NH_(3)for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films.Benefiting from the structural merits and the 3D-interconnected ionic transmission channels,p-MC film electrodes achieve excellent gravimetric capacitance(688.9 F g^(-1)at 2 A g^(-1))and superior rate capability.Moreover,the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability,demonstrating the great promise of p-MC electrode for practical applications. 展开更多
关键词 Ti_(3)CNT_(x)MXene carbon dots In situ etching 3D-interconnected porous structure Flexible supercapacitors
在线阅读 下载PDF
Wavelength-sensitive photocatalytic H2 evolution from H2S splitting over g-C3N4 with S,N-codoped carbon dots as the photosensitizer 被引量:2
10
作者 Zhanghui Xie Shan Yu +6 位作者 Xiang-Bing Fan Shiqian Wei Limei Yu Yunqian Zhong Xue-Wang Gao Fan Wu Ying Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期234-242,I0008,共10页
Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4... Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution. 展开更多
关键词 PHOTOSENSITIZATION S N-codoped carbon dots Hydrogen sulfide splitting Photocatalytic hydrogen evolution
在线阅读 下载PDF
Preparation and stabilization mechanism of carbon dots nanofluids for drag reduction 被引量:1
11
作者 Yi-Ning Wu Yuan Li +3 位作者 Meng-Jiao Cao Cai-Li Dai Long He Yu-Ping Yang 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1717-1725,共9页
During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potent... During the development of low or ultra-low permeability oil resources,the alternative energy supply becomes a prominent issue.In recent years,carbon dots(CDs)have drawn much attention owing to their application potential in oil fields for reducing injection pressure and augmenting oil recovery.However,carbon dots characterized of small size,high surface energy are faced with several challenges,such as self-aggregation and settling.The preparation of stably dispersed carbon dots nanofluids is the key factor to guarantee its application performance in formation.In this work,we investigated the stability of hydrophilic carbon dots(HICDs)and hydrophobic carbon dots-Tween 80(HOCDs)nanofluids.The influences of carbon dots concentration,sorts and concentration of salt ions as well as temperature on the stability of CDs were studied.The results showed that HICDs are more sensitive to sort and concentration of salt ions,while HOCDs are more sensitive to temperature.In addition,the core flooding experiments demonstrated that the pressure reduction rate of HICDs and HOCDs nanofluids can be as high as 17.88%and 26.14%,respectively.Hence,the HICDs and HOCDs nanofluids show a good application potential in the reduction of injection pressure during the development of low and ultra-low permeability oil resources. 展开更多
关键词 carbon dots Nanofluids Drag reduction Stabilization mechanism Salt tolerance
在线阅读 下载PDF
Surface passivation by multifunctional carbon dots toward highly efficient and stable inverted perovskite solar cells 被引量:1
12
作者 Qi Cao Yixin Zhang +8 位作者 Xingyu Pu Junsong Zhao Tong Wang Kui Zhang Hui Chen Xilai He Jiabao Yang Cheng Zhang Xuanhua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期9-15,I0001,共8页
Interfacial imperfections between the perovskite layer and the electron transport layer(ETL)in perovskite solar cells(PSCs)can lead to performance loss and negatively influence long-term operational stability.Here,we ... Interfacial imperfections between the perovskite layer and the electron transport layer(ETL)in perovskite solar cells(PSCs)can lead to performance loss and negatively influence long-term operational stability.Here,we introduce an interface engineering method to modify the interface between perovskite and ETL by using multifunctional carbon dots(CDs).C=O in the CDs can chelate with the uncoordinated Pb2+in the perovskite material,inhibit interfacial recombination,and enhance the performance and stability of device.In addition,–OH in CDs forms hydrogen bonds with I-and organic cation in perovskite,inhibiting light-induced I2release and organic cation volatilization,causing irreversible degradation of perovskite films,thereby enhancing the long-term operational stability of PSCs.Consequently,we achieve the champion inverted device with an efficiency of 24.02%.The CDs-treated PSCs exhibit high operational stability,and the maximum power point tracking only attenuates by 12.5%after 1000 h.Interfacial modification engineering supported by multifunctional quantum dots can accelerate the road to stable PSCs. 展开更多
关键词 Interfacial engineering carbon dots Non-radiative recombination
在线阅读 下载PDF
A new sulfur-doped source and synergistic effect with nitrogen for carbon dots produced from glucose
13
作者 Lige Fu Yuehong Yin +5 位作者 Guohua Cao Pingping Wu Jian Wang Lingling Yan Baoqing Zhang Ming Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期345-351,共7页
The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was dev... The nitrogen and sulfur co-doped carbon dots(N, S-CDs) with increased luminescence were synthesized by a hydrothermal process in one green pot by using glucose, and a new sulfur-doping source of sodium sulfite was developed.The synergistic effect of the N and S groups was well discussed through the structure analysis of Fourier transform infrared spectra and x-ray photoelectron spectra. The surface states of N, S-CDs embody more complicated functional groups, and S element exists as –SSO3, –C–SO3, and SO-42groups due to the introduction of sodium sulfite. The sulfur-containing groups passivate the surface of the CDs, and the relatively high sulfur groups may reduce the non-radiation centers. The fluorescence is affected by the hydroxyl group of the solvent. The quenching of Fe3+ ion to fluorescence and the sensitivity of fluorescence to p H were also investigated. 展开更多
关键词 carbon dots GLUCOSE sodium sulfite nitrogen and sulfur codoping synergistic effect
在线阅读 下载PDF
Influence of sulfur doping on the molecular fluorophore and synergistic effect for citric acid carbon dots
14
作者 Guohua Cao Zhifei Wei +4 位作者 Yuehong Yin Lige Fu Yukun Liu Shengli Qiu Baoqing Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期534-541,共8页
In citric acid-based carbon dots,molecular fluorophore contributes greatly to the fluorescence emission.In this paper,the nitrogen and sulfur co-doped carbon dots(N,S-CDs)were prepared,and an independent sulfur source... In citric acid-based carbon dots,molecular fluorophore contributes greatly to the fluorescence emission.In this paper,the nitrogen and sulfur co-doped carbon dots(N,S-CDs)were prepared,and an independent sulfur source is selected to achieve the doping controllability.The influence of sulfur doping on the molecular fluorophore was systematically studied.The introduction of sulfur atoms may promote the formation of molecular fluorophore due to the increased nitrogen content in CDs.The addition surface states containing sulfur were produced,and S element exists as-SO_(3),and-SO_(4)groups.Appreciate ratio of nitrogen and sulfur sources can improve the fluorescence emission.The photoluminescence quantum yields(PLQY)is increased from 56.4%of the single N-doping CDs to 63.4%of double-doping CDs,which ascribes to the synergistic effect of molecular fluorophores and surface states.The sensitivity of fluorescence to pH response and various metal ions was also explored. 展开更多
关键词 carbon dots citric acid sodium sulfite molecular fluorophore synergistic effect
在线阅读 下载PDF
Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst 被引量:4
15
作者 Satyabrat Gogoi Niranjan Karak 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期30-40,共11页
Safe, sustainable, and green production of hydro gen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the developm... Safe, sustainable, and green production of hydro gen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV,which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium.The overall process was performed in accordance with the principles of green chemistry using bio-based precursorsand aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst. 展开更多
关键词 carbon dot Photo-catalyst Heterogeneous catalyst Hydrogen peroxide
在线阅读 下载PDF
Carbon quantum dots for advanced electrocatalysis 被引量:19
16
作者 Lin Tian Zhao Li +3 位作者 Peng Wang Xiuhui Zhai Xiang Wang Tongxiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期279-294,共16页
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface ar... Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed. 展开更多
关键词 carbon quantum dots CONDUCTIVITY Electron transfer ELECTROCATALYSIS
在线阅读 下载PDF
Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries 被引量:13
17
作者 Yirong Zhu Jingying Li +6 位作者 Xiaoru Yun Ganggang Zhao Peng Ge Guoqiang Zou Yong Liu Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期1-18,共18页
Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w... Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials. 展开更多
关键词 Energy storage Alkaline aqueous batteries carbon quantum dot Nickel cobalt sulfide
在线阅读 下载PDF
Multifarious roles of carbon quantum dots in heterogeneous photocatalysis 被引量:6
18
作者 Kang-Qiang Lu Quan Quan +1 位作者 Nan Zhang Yi-Jun Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期927-935,共9页
As a new member of carbon material family, carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and op... As a new member of carbon material family, carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and optical properties, the roles of CQDs played in the CQDs-based photocatalytic systems have been found to be diverse with the continuous researches in this regard. Herein, we provide a concise minireview to elaborate the multifarious roles of CQDs in photocatalysis, including photoelectron mediator and acceptor, photosensitizer, photocatalyst, reducing agent for metal salt, enhancing adsorption capacity and spectral converter. In addition, the perspectives on future research trends and challenges are proposed, which are anticipated to stimulate further research into this promising field on designing a variety of efficient CQDs-based photocatalysts for solar energy conversion. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved. 展开更多
关键词 carbon quantum dots Multifarious roles Photocatalysis applications Solar energy conversion
在线阅读 下载PDF
Intrinsic pentagon defect engineering in multiple spatial-scale carbon frameworks for efficient triiodide reduction
19
作者 Siyi Hou Xuedan Song +6 位作者 Chang Yu Jiangwei Chang Yiwang Ding Yingbin Liu Xiubo Zhang Weizhe Liu Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期20-28,I0002,共10页
Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topologi... Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topological defects in carbon frameworks to reveal the relationship between reactivity and defect structure remains a challenging task.Herein,the intrinsic pentagon carbon sites that can favor electron overflow and enhance their binding affinity towards the intermediates of catalytic reaction are firstly presented by the work function and the p-band center calculations.To experimentally verify this,the cage-opening reaction of fullerene is proposed and utilized for synthesizing carbon quantum dots with specific pentagon configuration(CQDs-P),subsequently utilizing CQDs-P to modulate the micro-scale defect density of three-dimensional reduced graphene oxide(rGO)viaπ-πinteractions.The multiple spatial-scale rGO-conjugated CQDs-P structure simultaneously possesses abundant pentagon and edge defects as catalytic active sites and long-range-orderedπelectron delocalization system as conductive network.The defects-rich CQDs-P/rGO-4 all-carbon-based catalyst exhibits superb catalytic activity for triiodide reduction reaction with a high photoelectric conversion efficiency of 8.40%,superior to the Pt reference(7.97%).Theoretical calculations suggest that pentagon defects in the carbon frameworks can promote charge transfer and modulate the adsorption/dissociation behavior of the reaction intermediates,thus enhancing the electrocatalytic activity of the catalyst.This work confirms the role of intrinsic pentagon defects in catalytic reactions and provides a new insight into the synthesis of defects-rich carbon catalysts. 展开更多
关键词 Defect engineering Pentagon carbon carbon quantum dots Electrocatalytic activity Triiodide reduction
在线阅读 下载PDF
Sniffing Bacteria with a Carbon-Dot Artificial Nose 被引量:2
20
作者 Nitzan Shauloff Ahiud Morag +5 位作者 Karin Yaniv Seema Singh Ravit Malishev Ofra Paz-Tal Lior Rokach Raz Jelinek 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期138-152,共15页
Continuous,real-time monitoring and identification of bacteria through detection of microbially emitted volatile molecules are highly sought albeit elusive goals.We introduce an artificial nose for sensing and disting... Continuous,real-time monitoring and identification of bacteria through detection of microbially emitted volatile molecules are highly sought albeit elusive goals.We introduce an artificial nose for sensing and distinguishing vapor molecules,based upon recording the capacitance of interdigitated electrodes(IDEs)coated with carbon dots(C-dots)exhibiting different polarities.Exposure of the C-dot-IDEs to volatile molecules induced rapid capacitance changes that were intimately dependent upon the polarities of both gas molecules and the electrode-deposited C-dots.We deciphered the mechanism of capacitance transformations,specifically substitution of electrode-adsorbed water by gas molecules,with concomitant changes in capacitance related to both the polarity and dielectric constants of the vapor molecules tested.The C-dot-IDE gas sensor exhibited excellent selectivity,aided by application of machine learning algorithms.The capacitive C-dot-IDE sensor was employed to continuously monitor microbial proliferation,discriminating among bacteria through detection of distinctive“volatile compound fingerprint”for each bacterial species.The C-dot-IDE platform is robust,reusable,readily assembled from inexpensive building blocks and constitutes a versatile and powerful vehicle for gas sensing in general,bacterial monitoring in particular. 展开更多
关键词 carbon dots Bacterial detection Bacterially emitted volatile molecules Capacitive gas sensors Gas polarity
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部