期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
Offshore Carbon Capture, Utilization, and Storage
1
作者 Jianghui Li 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期525-528,共4页
Climate change, resulting from human-caused CO_(2) and other greenhouse gas emissions, is an urgent problem that demands immediate action from everyone. The need to decrease emissions has sparked a renewed emphasis on... Climate change, resulting from human-caused CO_(2) and other greenhouse gas emissions, is an urgent problem that demands immediate action from everyone. The need to decrease emissions has sparked a renewed emphasis on developing and utilizing offshore Carbon Capture,Utilization,and Storage(CCUS) technologies.While these technologies offer potential solutions to mitigate greenhouse gas emissions,many challenges must be addressed to ensure successful implementation. 展开更多
关键词 capture storage carbon
在线阅读 下载PDF
Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage
2
作者 Bin Liu Yutong Fu Pengfei Wen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期628-633,共6页
To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established tec... To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO_(2) distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO_(2) distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable(Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a highfrequency source(the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for timelapse seismic monitoring of oceanic CCS. 展开更多
关键词 carbon capture and storage Hcable Seismic monitoring High resolution image High frequency seismic source
在线阅读 下载PDF
Progress and prospects of carbon dioxide capture,EOR-utilization and storage industrialization 被引量:11
3
作者 YUAN Shiyi MA Desheng +3 位作者 LI Junshi ZHOU Tiyao JI Zemin HAN Haishui 《Petroleum Exploration and Development》 CSCD 2022年第4期955-962,共8页
Carbon dioxide capture,EOR-utilization and storage(CCUS-EOR)are the most practical and feasible large-scale carbon reduction technologies,and also the key technologies to greatly improve the recovery of low-permeabili... Carbon dioxide capture,EOR-utilization and storage(CCUS-EOR)are the most practical and feasible large-scale carbon reduction technologies,and also the key technologies to greatly improve the recovery of low-permeability oil fields.This paper sorts out the main course of CCUS-EOR technological development abroad and its industrialization progress.The progress of CCUS-EOR technological research and field tests in China are summarized,the development status,problems and challenges of the entire industry chain of CO_(2) capture,transportation,oil displacement,and storage are analyzed.The results show a huge potential of the large-scale application of CCUS-EOR in China in terms of carbon emission reduction and oil production increase.At present,CCUS-EOR in China is in a critical stage of development,from field pilot tests to industrialization.Aiming at the feature of continental sedimentary oil and gas reservoirs in China,and giving full play to the advantages of the abundant reserves for CO_(2) flooding,huge underground storage space,surface infrastructure,and wide distribution of wellbore injection channels,by cooperating with carbon emission enterprises,critical technological research and demonstration project construction should be accelerated,including the capture of low-concentration CO_(2) at low-cost and on large-scale,supercritical CO_(2) long-distance transportation,greatly enhancing oil recovery and storage rate,and CO_(2) large-scale and safe storage.CCUS-EOR theoretical and technical standard system should be constructed for the whole industrial chain to support and promote the industrial scale application,leading the rapid and profitable development of CCUS-EOR emerging industrial chain with innovation. 展开更多
关键词 carbon dioxide CCUS-EOR carbon capture TRANSPORTATION oil displacement carbon storage enhanced oil recovery INDUSTRIALIZATION
在线阅读 下载PDF
Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields 被引量:7
4
作者 SONG Xinmin WANG Feng +2 位作者 MA Desheng GAO Ming ZHANG Yunhai 《Petroleum Exploration and Development》 2023年第1期229-244,共16页
The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industri... The development history of carbon capture,utilization and storage for enhanced oil recovery(CCUS-EOR)in China is comprehensively reviewed,which consists of three stages:research and exploration,field test and industrial application.The breakthrough understanding of CO_(2) flooding mechanism and field practice in recent years and the corresponding supporting technical achievements of CCUS-EOR project are systematically described.The future development prospects are also pointed out.After nearly 60 years of exploration,the theory of CO_(2) flooding and storage suitable for continental sedimentary reservoirs in China has been innovatively developed.It is suggested that C7–C15 are also important components affecting miscibility of CO_(2) and crude oil.The mechanism of rapid recovery of formation energy by CO_(2) and significant improvement of block productivity and recovery factor has been verified in field tests.The CCUS-EOR reservoir engineering design technology for continental sedimentary reservoir is established.The technology of reservoir engineering parameter design and well spacing optimization has been developed,which focuses on maintaining miscibility to improve oil displacement efficiency and uniform displacement to improve sweep efficiency.The technology of CO_(2) capture,injection and production process,whole-system anticorrosion,storage monitoring and other whole-process supporting technologies have been initially formed.In order to realize the efficient utilization and permanent storage of CO_(2),it is necessary to take the oil reservoir in the oil-water transition zone into consideration,realize the large-scale CO_(2) flooding and storage in the area from single reservoir to the overall structural control system.The oil reservoir in the oil-water transition zone is developed by stable gravity flooding of injecting CO_(2) from structural highs.The research on the storage technology such as the conversion of residual oil and CO_(2) into methane needs to be carried out. 展开更多
关键词 carbon dioxide carbon dioxide capture EOR-utilization and storage oil displacement mechanism storage mechanism injection-production process EOR
在线阅读 下载PDF
Investigation of the role of Ca(OH)2 in the catalytic Alkaline Thermal Treatment of cellulose to produce H2 with integrated carbon capture 被引量:1
5
作者 Maxim R.Stonor Nicholas Ouassil +1 位作者 Jingguang G.Chen Ah-Hyung Alissa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期984-1000,共17页
The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a ca... The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a carbon-neutral process that has the potential to be carbon-negative.This study has shown that the conversion of cellulose tosuppressedcan be achieved through the reforming of gaseous intermediates in a fixed bed of 10%Ni/ZrO2.Reforming occurs at low temperatures≤773 K,which could allow for improved sustainability. 展开更多
关键词 Hydrogen Biomass Alkaline Thermal Treatment Calcium hydroxide Calcium carbonate carbon capture utilization storage Nickel Heterogeneous catalysis Catalytic reforming
在线阅读 下载PDF
The European Carbon dioxide Capture and Storage Laboratory Infrastructure(ECCSEL) 被引量:2
6
作者 Sverre Quale Volker Rohling 《Green Energy & Environment》 SCIE 2016年第3期180-194,共15页
The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to p... The transition to a non-emitting energy mix for power generation will take decades. This transition will need to be sustainable, e.g.economically affordable. Fossil fuels which are abundant have an important role to play in this respect, provided that Carbon Capture and Storage(CCS) is progressively implemented. CCS is the only way to reduce emissions from energy intensive industries.Thus, the need for upgraded and new CCS research facilities is widely recognised among stakeholders across Europe, as emphasised by the Zero Emissions Platform(ZEP) [1] and the European Energy Research Alliance on CCS(EERA-CCS) [2].The European Carbon Dioxide Capture and Storage Laboratory Infrastructure, ECCSEL, provides funders, operators and researchers with significant benefits by offering access to world-class research facilities that, in many cases, are unlikely for a single nation to support in isolation.This implies creation of synergy and the avoidance of duplication as well as streamlining of funding for research facilities.ECCSEL offers open access to its advanced laboratories for talented scientists and visiting researchers to conduct cutting-edge research.In the planning of ECCSEL, gap analyses were performed and CCS technologies have been reviewed to underpin and envisage the future experimental setup; 1) Making use of readily available facilities, 2) Modifying existing facilities, and 3) Planning and building entirely new advanced facilities.The investments required for the first ten years(2015-2025) are expected to be in the range of €80-120 miilion. These investments show the current level of ambition, as proposed during the preparatory phase(2011-2014).Entering the implementation phase in 2015, 9 European countries signed Letter of Intent(LoI) to join a ECCSEL legal entity: France, United Kingdom, Netherlands, Italy, Spain, Poland, Greece, Norway and Switzerland(active observer). As the EU ERIC-regulation [3] would offer the most suitable legal framework for ECCSEL, the host country, Norway, will apply for establishing ERIC as the ECCSEL Research Infrastructure(RI)legal entity in 2017. Until the ECCSEL ERIC is approved by the European Commission(probably by summer 2017), an interim MoU agreement for the implementation phase of ECCSEL RI has been signed by 13 research institutions and universities representing the 9 countries. A consortium of these partners were granted 3 million EURO from Horizon 2020 to boost implementation of ECCSEL from September 2015 and two years onwards.?2016, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 CCS carbon Dioxide capture Transport and storage CO2 Research Infrastructure LABORATORY
在线阅读 下载PDF
Preface to Special Issue: CO_2 capture storage and utilization
7
作者 Yanqiang Huang Qiang Wang Jinlong Gong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期819-820,共2页
Reducing the anthropogenic COemissions from fossil resource combustion and human activities has become one of the major challenges we are facing today.Beyond those practical applications for the utilization of CO,such... Reducing the anthropogenic COemissions from fossil resource combustion and human activities has become one of the major challenges we are facing today.Beyond those practical applications for the utilization of CO,such as the synthesis of salicylic acid,methanol,urea,NaHCO-NaCOchemicals and recently developed polycarbonate synthesis,scientists are still seeking new materials and technologies for efficient capture, 展开更多
关键词 CO2 capture storage and utilization Preface to Special Issue
在线阅读 下载PDF
Navigating the hydrogen prospect:A comprehensive review of sustainable source-based production technologies,transport solutions,advanced storage mechanisms,and CCUS integration
8
作者 Sehar Tasleem Chandra Sekhar Bongu +1 位作者 Mohan Raj Krishnan Edreese Housni Alsharaeh 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期166-215,I0005,共51页
The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable... The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale. 展开更多
关键词 Source-based hydrogen Hydrogen utilization carbon capture E-fuels Hydrogen storage Transport infrastructure
在线阅读 下载PDF
Characterization of Depleted Hydrocarbon Reservoir AA-01 of KOKA Field in the Niger Delta Basin for Sustainable Sub-Sea Carbon Dioxide Storage
9
作者 Patrick A.Eigbe Olatunbosun O.Ajayi +1 位作者 Olabode T.Olakoyejo Adekunle O.Adelaja 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期544-564,共21页
This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability... This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability for CO_(2) storage, and compositional simulation of hydrocarbon components. The primary objective was to determine the initial components and behavior of the hydrocarbon system required to optimize the injection of CO_(2) and accompanying impurities, establishing a robust basis for subsequent sequestration efforts in the six wells in the depleted KOKA AA-01 reservoir. The process, simulated using industry software such as ECLIPSE, PVTi, SCAL, and Petrel, included a compositional fluid analysis to confirm the pressure volume temperature(PVT) hydrocarbon phases and components. This involved performing a material balance on the quality of the measured data and matching the initial reservoir pressure with the supplied data source. The compositional PVT analysis adopted the Peng–Robinson equation of state to model fluid flow in porous media and estimate the necessary number of phases and components to describe the system accurately. Results from this investigation indicate that the KOKA AA-01 reservoir is suitable for CO_(2)sequestration. This conclusion is based on the reservoir's good quality, evidenced by an average porosity of 0.21 and permeability of 1 111.0 mD, a measured lithological depth of 9 300 ft, and characteristic reservoir – seal properties correlated from well logs. The study confirmed that volumetric behavior predictions are directly linked to compositional behavior predictions, which are essential during reservoir initialization and data quality checks. Additionally, it highlighted that a safe design for CO_(2) storage relies on accurately representing multiphase behaviour across wide-ranging pressure–temperature–composition conditions. 展开更多
关键词 carbon capture CO_(2)sequestration Geological storage Geo-mechanical modeling Multiphase flow Niger Delta
在线阅读 下载PDF
Assessing the Viability of Gandhar Field in India’s Cambay Basin for CO_(2) Storage
10
作者 Vikram Vishal Somali Roy +1 位作者 Yashvardhan Verma Bharath Shekar 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期529-543,共15页
Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon di... Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon dioxide(CO_(2)) storage through its injection into the siliciclastic reservoirs of Ankleshwar Formation. We aimed to obtain high-resolution acoustic impedance data to estimate porosity employing model-based poststack seismic inversion. We conducted an analysis of the density and effective porosity in the target zone through geostatistical techniques and probabilistic neural networks. Simultaneously, the work also involved geomechanical analysis through the computation of pore pressure and fracture gradient using well-log data, geological information, and drilling events in the Gandhar field. Our investigation unveiled spatial variations in effective porosity within the Hazad Member of the Ankleshwar Formation, with an effective porosity exceeding 25% observed in several areas, which indicates the presence of well-connected pore spaces conducive to efficient CO_(2) migration. Geomechanical analysis showed that the vertical stress(Sv) ranged from 55 MPa to 57 MPa in Telwa and from 63.7 MPa to 67.7 MPa in Hazad Member. The pore pressure profile displayed variations along the stratigraphic sequence, with the shale zone, particularly in the Kanwa Formation, attaining the maximum pressure gradient(approximately 36 MPa). However, consistently low pore pressure values(30-34 MPa) considerably below the fracture gradient curves were observed in Hazad Member due to depletion. The results from our analysis provide valuable insights into shaping future field development strategies and exploration of the feasibility of CO_(2) sequestration in Gandhar Field. 展开更多
关键词 carbon capture and storage Reservoir characterization Seismic inversion GEOMECHANICS CO_(2)storage CO_(2)enhancing oil recovery
在线阅读 下载PDF
International experience of carbon neutrality and prospects of key technologies:Lessons for China 被引量:8
11
作者 Zheng-Meng Hou Ying Xiong +9 位作者 Jia-Shun Luo Yan-Li Fang Muhammad Haris Qian-Jun Chen Ye Yue Lin Wu Qi-Chen Wang Liang-Chao Huang Yi-Lin Guo Ya-Chen Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期893-909,共17页
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev... Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation. 展开更多
关键词 International experience carbon reduction technologies carbon neutrality Energy transition Underground energy storage carbon capture utilization and storage(CCUS)
在线阅读 下载PDF
CO_(2)storage with enhanced gas recovery(CSEGR):A review of experimental and numerical studies 被引量:11
12
作者 Shu-Yang Liu Bo Ren +5 位作者 Hang-Yu Li Yong-Zhi Yang Zhi-Qiang Wang Bin Wang Jian-Chun Xu Ramesh Agarwal 《Petroleum Science》 SCIE CAS CSCD 2022年第2期594-607,共14页
CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission b... CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission by sequestrating it into gas reservoirs and simultaneously enhance natural gas production.Over the past decades,the displacement behaviour of CO_(2)—natural gas has been extensively studied and demonstrated to play a key role on both CO_(2)geologic storage and gas recovery performance.This work thoroughly and critically reviews the experimental and numerical simulation studies of CO_(2)displacing natural gas,along with both CSEGR research and demonstration projects at various scales.The physical property difference between CO_(2)and natural gas,especially density and viscosity,lays the foundation of CSEGR.Previous experiments on displacement behaviour and dispersion characteristics of CO_(2)/natural gas revealed the fundamental mixing characteristics in porous media,which is one key factor of gas recovery efficiency and warrants further study.Preliminary numerical simulations demonstrated that it is technically and economically feasible to apply CSEGR in depleted gas reservoirs.However,CO_(2)preferential flow pathways are easy to form(due to reservoir heterogeneity)and thus adversely compromise CSEGR performance.This preferential flow can be slowed down by connate or injected water.Additionally,the optimization of CO_(2)injection strategies is essential for improving gas recovery and CO_(2)storage,which needs further study.The successful K12—B pilot project provides insightful field-scale knowledge and experience,which paves a good foundation for commercial application.More experiments,simulations,research and demonstration projects are needed to facilitate the maturation of the CSEGR technology. 展开更多
关键词 carbon capture utilization and storage(CCUS) Enhanced gas recovery CO_(2)geologic storage Miscible displacement DISPERSION
在线阅读 下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
13
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar Dual-tree complex wavelet transform(DT-CWT) Deep learning
在线阅读 下载PDF
Monitoring Technologies for Marine Carbon Sequestration in Zhanjiang
14
作者 Yiwen Xiong Yangze Dong +1 位作者 Xiahua Chen Wenchang Ling 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期617-627,共11页
Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2)... Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas. 展开更多
关键词 Marine carbon sequestration carbon dioxide capture utilization and storage(CCUS) CO_(2)leakage Monitoring technologies
在线阅读 下载PDF
A review of interaction mechanisms and microscopic simulation methods for CO_(2)-water-rock system
15
作者 ZHANG Liehui ZHANG Tao +6 位作者 ZHAO Yulong HU Haoran WEN Shaomu WU Jianfa CAO Cheng WANG Yongchao FAN Yunting 《Petroleum Exploration and Development》 SCIE 2024年第1期223-238,共16页
This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscop... This work systematically reviews the complex mechanisms of CO_(2)-water-rock interactions,microscopic simulations of reactive transport(dissolution,precipitation and precipitate migration)in porous media,and microscopic simulations of CO_(2)-water-rock system.The work points out the key issues in current research and provides suggestions for future research.After injection of CO_(2) into underground reservoirs,not only conventional pressure-driven flow and mass transfer processes occur,but also special physicochemical phenomena like dissolution,precipitation,and precipitate migration.The coupling of these processes causes complex changes in permeability and porosity parameters of the porous media.Pore-scale microscopic flow simulations can provide detailed information within the three-dimensional pore and throat space and explicitly observe changes in the fluid-solid interfaces of porous media during reactions.At present,the research has limitations in the decoupling of complex mechanisms,characterization of differential multi-mineral reactions,precipitation generation mechanisms and characterization(crystal nucleation and mineral detachment),simulation methods for precipitation-fluid interaction,and coupling mechanisms of multiple physicochemical processes.In future studies,it is essential to innovate experimental methods to decouple“dissolution-precipitation-precipitate migration”processes,improve the accuracy of experimental testing of minerals geochemical reaction-related parameters,build reliable characterization of various precipitation types,establish precipitation-fluid interaction simulation methods,coordinate the boundary conditions of different physicochemical processes,and,finally,achieve coupled flow simulation of“dissolution-precipitation-precipitate migration”within CO_(2)-water-rock systems. 展开更多
关键词 CO_(2)-water-rock DISSOLUTION precipitation precipitate migration microscopic simulation CO_(2)capture utilization and storage carbon neutrality decouple
在线阅读 下载PDF
A review on plasma-based CO_(2) utilization:process considerations in the development of sustainable chemical production
16
作者 Sirui LI Giulia De FELICE +2 位作者 Simona EICHKORN Tao SHAO Fausto GALLUCCI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期1-16,共16页
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un... Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process. 展开更多
关键词 non-thermal plasma carbon capture and utilization process integration process intensification techno-economic analysis life cycle analysis
在线阅读 下载PDF
Facile and controllable synthesis of BaCO_3 crystals superstructures using a CO_2-storage material
17
作者 Feng Sha Bo Guo +5 位作者 Jing Zhao Fei Zhang Xianshu Qiao Liang Ma Chang Liu Jianbin Zhang 《Green Energy & Environment》 SCIE 2017年第4期401-411,共11页
We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This... We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This novel CO_2 SM was then used to prepare BaCO_3 crystals through a simple and fast hydrothermal synthesis under mild conditions. The CO_2 SM was both the source of CO_2 and the modifier to regulate the nucleation and growth of BaCO_3 crystals. The morphology of the BaCO_3 crystals could be tuned from rod to shuttle by adjusting the key influencing factors, including CO_2 SM concentration, mineralization temperature, and mineralization time. A possible mechanism for the synthesis of BaCO_3 crystals from the CO_2 SM was also presented. After the BaCO_3 crystals were isolated, the filtrate of the hydrothermal reaction could be recycled to again absorb CO_2 and prepare BaCO_3 crystals of the same polymorph. This novel approach appears promising for preparing well-formed metal carbonates. 展开更多
关键词 BACO3 CO2-storage material Morphology control CO2 capture and utilization
在线阅读 下载PDF
Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model 被引量:2
18
作者 Jian-Xiang Chen Rui-Yue Yang +4 位作者 Zhong-Wei Huang Xiao-Guang Wu Shi-Kun Zhang Hai-Zhu Wang Feng Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1750-1767,共18页
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di... Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs. 展开更多
关键词 carbonATE carbon capture utilization and storage(CCUS) Jet fracturing Coupled model Geothermal reservoir
在线阅读 下载PDF
CCUS地质封存井筒完整性研究进展及发展建议
19
作者 郭少坤 李军 +1 位作者 连威 曹伟 《石油钻探技术》 北大核心 2025年第1期144-154,共11页
CO_(2)地质利用与封存的实施过程中气体泄漏与逃逸问题不仅影响工程效果,还会威胁人员和环境安全。井筒是CO_(2)泄漏的高风险途径,井筒完整性对保障CO_(2)长期稳定封存意义重大。针对CO_(2)地质封存中井筒密封失效可能引发的气体泄漏问... CO_(2)地质利用与封存的实施过程中气体泄漏与逃逸问题不仅影响工程效果,还会威胁人员和环境安全。井筒是CO_(2)泄漏的高风险途径,井筒完整性对保障CO_(2)长期稳定封存意义重大。针对CO_(2)地质封存中井筒密封失效可能引发的气体泄漏问题,在总结国内外相关研究成果的基础上,分析了CO_(2)注入和封存条件下井筒完整性失效机理与影响因素,讨论了不同封存地质体条件下可能出现的井筒完整性问题。基于国内CO_(2)地质封存技术现状,提出了井筒完整性技术对策及建议:优化设计水泥浆体系与施工参数,优选封存地层与管柱材料,加强CO_(2)泄漏监测技术研究,将预防措施与应对手段相结合,形成完整的技术体系。 展开更多
关键词 CCUS 二氧化碳 井筒完整性 地质封存 泄漏
在线阅读 下载PDF
Experimental salt cavern in offshore ultra-deep water and well designevaluation for CO_(2) abatement 被引量:3
20
作者 Alvaro Maia da Costa Pedro V.M.Costa +12 位作者 Antonio C.O.Miranda Mariana B.R.Goulart Okhiria D.Udebhulu Nelson F.F.Ebecken Ricardo C.Azevedo Sérgio M.de Eston Giorgio de Tomi Andre B.Mendes Julio R.Meneghini Kazuo Nishimoto Claudio Mueller Sampaio Camila Brandao Alexandre Breda 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期641-656,共16页
This paper presents a proposal for an experimental salt cavern in offshore ultra-deep water for CO2 abatement,including the instrumentation plan and well conceptual design evaluated for carbon capture and storage(CCS)... This paper presents a proposal for an experimental salt cavern in offshore ultra-deep water for CO2 abatement,including the instrumentation plan and well conceptual design evaluated for carbon capture and storage(CCS)application.These studies are based on applied computational mechanics associated with field experimentation that has contributed to the technical feasibility of the underground potash mine at the State of Sergipe in Brazil.This knowhow allowed the stability analysis of several salt caverns for brine production at the State of Alagoas in Brazil and to the drilling through stratified thick layers of salt of the pre-salt reservoirs in Santos Basin.Now,this knowledge has been applied in the design of onshore and offshore salt caverns opened by dissolution for storage of natural gas and CO2.The geomechanical study,through the application of computational mechanics,of offshore giant salt caverns of 450 m high by 150 m in diameter,shows that one cavern can store about 4 billion Sm3 or 7.2 million tons of CO2.Before the construction of the giant cavern,which will be the first gas storage offshore in the world,it has been decided to develop an experimental one,with smaller size,to obtained field parameters.The experimental cavern will allow the calibration of parameters to be used in the structural integrity analysis of the cavern and well for storage of natural gas which is rich in CO2 under high pressure. 展开更多
关键词 Salt cavern Pre-salt reservoir Geomechanical study carbon capture and storage
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部