期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于胶囊异构图注意力网络的中文表格型数据事实验证 被引量:1
1
作者 杨鹏 查显宇 +1 位作者 赵广振 林茜 《软件学报》 EI CSCD 北大核心 2024年第9期4324-4345,共22页
事实验证旨在检查一个文本陈述是否被给定的证据所支持.由于表格结构上具有依赖性、内容上具有隐含性,以表格作为证据的事实验证任务仍面临很多挑战.现有工作或者利用逻辑表达式来解析基于表格证据的陈述,或者设计表格感知神经网络来编... 事实验证旨在检查一个文本陈述是否被给定的证据所支持.由于表格结构上具有依赖性、内容上具有隐含性,以表格作为证据的事实验证任务仍面临很多挑战.现有工作或者利用逻辑表达式来解析基于表格证据的陈述,或者设计表格感知神经网络来编码陈述-表格对,以此实现基于表格的事实验证任务.但是,这些方法没有充分利用陈述背后隐含的表格信息,从而导致模型的推理性能下降,并且基于表格证据的中文陈述具有更加复杂的语法和语义,也给模型推理带来更大的困难.为此,提出基于胶囊异构图注意力网络(CapsHAN)的中文表格型数据事实验证方法,所提方法能充分理解陈述的结构和语义,进而挖掘和利用陈述所隐含的表格信息,有效提升基于表格的事实验证任务准确性.具体而言,首先通过对陈述进行依存句法分析和命名实体识别来构建异构图,接着对该图采用异构图注意力网络和胶囊图神经网络进行学习和理解,然后将得到的陈述文本表示与经过编码的表格文本表示进行拼接,最后完成结果的预测.更进一步,针对现有中文表格型事实验证数据集匮乏而难以支持基于表格的事实验证方法性能评价的难题,首先对主流TABFACT和INFOTABS表格事实验证英文数据集进行中文转化,并且专门针对中文表格型数据的特点构建了基于UCL国家标准的数据集UCLDS,该数据集将维基百科信息框作为人工注释的自然语言陈述的证据,并被标记为蕴含、反驳或中立3类.UCLDS在同时支持单表和多表推理方面比传统TABFACT和INFOTABS数据集更胜一筹.在上述3个中文基准数据集上的实验结果表明,所提模型的表现均优于基线模型,证明该模型在基于中文表格的事实验证任务上的优越性. 展开更多
关键词 基于表格的事实验证 异构图注意力网络 胶囊图神经网络 依存句法分析 命名实体识别
在线阅读 下载PDF
基于改进胶囊网络的会话型推荐模型
2
作者 孙浩 曹健 +1 位作者 李海生 毛典辉 《计算机应用》 CSCD 北大核心 2023年第4期1043-1049,共7页
针对现有的会话型推荐模型难以从简短的会话中捕获项目之间的依赖关系的问题,在考虑了复杂的项目交互和动态的用户兴趣变化后,提出了一种基于会话型推荐的改进胶囊网络(SR-ECN)模型。首先,利用图神经网络(GNN)处理会话序列数据,以得到... 针对现有的会话型推荐模型难以从简短的会话中捕获项目之间的依赖关系的问题,在考虑了复杂的项目交互和动态的用户兴趣变化后,提出了一种基于会话型推荐的改进胶囊网络(SR-ECN)模型。首先,利用图神经网络(GNN)处理会话序列数据,以得到每个项目嵌入向量;然后,利用胶囊网络的动态路由机制,从交互历史中聚合高级用户的偏好;此外,所提模型引入自注意力网络进一步考虑用户和项目的潜在信息,从而为用户推荐更合适的项目。实验结果表明,在Yoochoose数据集上,所提模型的召回率和平均倒数排名(MRR)均优于SR-GNN(Session-based Recommendation with GNN)、TAGNN(Target Attentive GNN)等所有对比模型,与基于无损边缘保留聚合和快捷图注意力的推荐(LESSR)模型相比,所提模型的召回率和MRR分别提升了0.92和0.45个百分点,验证了改进胶囊网络对用户兴趣偏好提取的有效性。 展开更多
关键词 胶囊网络 会话型推荐 图神经网络 自注意力机制 推荐系统
在线阅读 下载PDF
基于深度图卷积胶囊网络的图分类模型 被引量:3
3
作者 刘海潮 王莉 《计算机科学》 CSCD 北大核心 2020年第9期219-225,共7页
针对提取图表征用于图分类过程中的结构信息提取过程的问题,提出了一种图卷积神经网络与胶囊网络融合的图分类模型。首先,利用图卷积神经网络处理图中的节点信息,迭代以后得到节点表征,表征中蕴含着该节点的子树结构信息;然后,利用Weisf... 针对提取图表征用于图分类过程中的结构信息提取过程的问题,提出了一种图卷积神经网络与胶囊网络融合的图分类模型。首先,利用图卷积神经网络处理图中的节点信息,迭代以后得到节点表征,表征中蕴含着该节点的子树结构信息;然后,利用Weisfeiler-Lehman图核算法的思想对节点表征的多维度进行排序,得到多视角的图表征;最后,将多视角的图表征整理成胶囊的形式并输入胶囊网络,使用动态路由算法得到更高层次的分类胶囊,进而进行分类。实验结果表明,所提模型在公共数据集上的分类准确度提升了1%~3%,同时具备更强的结构特征提取能力,在少样本情况下的表现比DGCNN更加稳定。 展开更多
关键词 图分类 图表征 图卷积神经网络 胶囊网络 Weisfeiler-Lehman图核算法
在线阅读 下载PDF
JCapsR:一种联合胶囊神经网络的藏语知识图谱表示学习模型
4
作者 孙媛 梁家亚 +1 位作者 陈安东 赵小兵 《中文信息学报》 2024年第4期69-77,共9页
知识图谱表示学习是自然语言处理的一项关键技术,现有的知识图谱表示研究主要集中在英语、汉语等语言,而低资源语言的知识图谱表示学习研究还处于探索阶段,如藏语。该文基于前期构建的藏语知识图谱,提出了一种联合胶囊神经网络(JCapsR)... 知识图谱表示学习是自然语言处理的一项关键技术,现有的知识图谱表示研究主要集中在英语、汉语等语言,而低资源语言的知识图谱表示学习研究还处于探索阶段,如藏语。该文基于前期构建的藏语知识图谱,提出了一种联合胶囊神经网络(JCapsR)的藏语知识图谱表示学习模型。首先,我们使用TransR模型生成藏语知识图谱的结构化信息表示。其次,采用融合多头注意力和关系注意力的Transfomer模型表示藏语实体的文本描述信息。最后,采用JCapsR进一步提取三元组在知识图谱语义空间中的关系,将实体文本描述信息和结构化信息融合,得到藏语知识图谱的表示,相比基线系统,联合胶囊神经网络JCapsR模型提高了在藏语知识图谱上实体链接预测的性能,相关研究为其他低资源语言知识图谱表示学习的拓展优化提供了参考借鉴意义。 展开更多
关键词 藏语知识图谱 表示学习 胶囊神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部