Development of effective chromatographic or electrophoretic separation involves judicious deciding of selection of optimal experimental conditions that can provide an adequate resolution at a reasonable run time for t...Development of effective chromatographic or electrophoretic separation involves judicious deciding of selection of optimal experimental conditions that can provide an adequate resolution at a reasonable run time for the separation of interested components. Box-Behnken factorial design was effectively applied for the separation optimization of eight structurally related sulfonamides using capillary zone electrophorosis and reverse high performance liquid chromatography. Optimum values for volume ratio of THF to H2O in eluent, column temperature and flow rate of eluent are found as 12 to 88, 35℃ and 1.0 mL/min, respectively. Box-Behnken modified optimization model is extended to separation by capillary electrophoresis (CE). While using CE, a satisfactory separation is achieved with a minimum resolution larger than 1.0 for a separation time less than 10 min.展开更多
Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affini...Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 μmol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE mass spectrometry (CE MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE MS.展开更多
目的建立毛细管电泳电化学技术(capillary electrophoresis with electrochemical detection,CE-ECD)检测人全血中同型半胱氨酸(homocysteine,Hcy)、半胱氨酸(cysteine,Cys)和还原型谷胱甘肽(reducedglutathione,GSH)的方法。考察缓冲...目的建立毛细管电泳电化学技术(capillary electrophoresis with electrochemical detection,CE-ECD)检测人全血中同型半胱氨酸(homocysteine,Hcy)、半胱氨酸(cysteine,Cys)和还原型谷胱甘肽(reducedglutathione,GSH)的方法。考察缓冲液的浓度、酸碱度、分离电压、进样时间和检测电压等参数对分离和检测的影响,确定最佳的实验条件。方法以直径为500μm的铂圆盘电极作为检测电极,用长度为50cm的熔融石英毛细管对一系列待检物标准溶液和人全血样本进行毛细管电泳电化学检测。结果在最优条件下,当电极电位为+1.05V(相对饱和甘汞电极)、分离电压为18kV时,Hcy、Cys和GSH于100mmol/L的磷酸盐缓冲液(pH7.8)中在10min内获得理想分离。检测下限(S/N=3)在0.29~0.80μmol/L范围内,且在3倍数量级浓度范围内,3种组分的浓度与峰电流呈良好线性关系。对0.5mmol/L的混合标准溶液连续检测7次,Hcy、Cys和GSH峰高的相对标准偏差(relative standard deviation,RSD)分别为3.7%、3.1%和2.9%。结论 CE-ECD方法可对Hcy、Cys和GSH等3种生物活性巯基化合物进行高效分离及检测,具有分析速度快、成本低、灵敏度高、试剂及样品用量小等优点,因此在生物医药领域具有广泛的应用前景。本实验采用的铂圆盘电极具有污染少、重复性好的特点。展开更多
基金Project(20235010) support by the NSFC-KOSEF Scientific Cooperation ProgramProject supported by the Program for New Century Talents of University in Henan ProvinceProgram for Backbone Teacher in Henan Province, China
文摘Development of effective chromatographic or electrophoretic separation involves judicious deciding of selection of optimal experimental conditions that can provide an adequate resolution at a reasonable run time for the separation of interested components. Box-Behnken factorial design was effectively applied for the separation optimization of eight structurally related sulfonamides using capillary zone electrophorosis and reverse high performance liquid chromatography. Optimum values for volume ratio of THF to H2O in eluent, column temperature and flow rate of eluent are found as 12 to 88, 35℃ and 1.0 mL/min, respectively. Box-Behnken modified optimization model is extended to separation by capillary electrophoresis (CE). While using CE, a satisfactory separation is achieved with a minimum resolution larger than 1.0 for a separation time less than 10 min.
文摘Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 μmol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE mass spectrometry (CE MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE MS.
文摘目的建立毛细管电泳电化学技术(capillary electrophoresis with electrochemical detection,CE-ECD)检测人全血中同型半胱氨酸(homocysteine,Hcy)、半胱氨酸(cysteine,Cys)和还原型谷胱甘肽(reducedglutathione,GSH)的方法。考察缓冲液的浓度、酸碱度、分离电压、进样时间和检测电压等参数对分离和检测的影响,确定最佳的实验条件。方法以直径为500μm的铂圆盘电极作为检测电极,用长度为50cm的熔融石英毛细管对一系列待检物标准溶液和人全血样本进行毛细管电泳电化学检测。结果在最优条件下,当电极电位为+1.05V(相对饱和甘汞电极)、分离电压为18kV时,Hcy、Cys和GSH于100mmol/L的磷酸盐缓冲液(pH7.8)中在10min内获得理想分离。检测下限(S/N=3)在0.29~0.80μmol/L范围内,且在3倍数量级浓度范围内,3种组分的浓度与峰电流呈良好线性关系。对0.5mmol/L的混合标准溶液连续检测7次,Hcy、Cys和GSH峰高的相对标准偏差(relative standard deviation,RSD)分别为3.7%、3.1%和2.9%。结论 CE-ECD方法可对Hcy、Cys和GSH等3种生物活性巯基化合物进行高效分离及检测,具有分析速度快、成本低、灵敏度高、试剂及样品用量小等优点,因此在生物医药领域具有广泛的应用前景。本实验采用的铂圆盘电极具有污染少、重复性好的特点。