With the development of power systems,a large number of shunt capacitors are used to improve power quality in the distribution network.The shunt capacitor banks are operated much frequently,as a result,the capacitor b...With the development of power systems,a large number of shunt capacitors are used to improve power quality in the distribution network.The shunt capacitor banks are operated much frequently,as a result,the capacitor banks will bear large numbers of over-voltage inevitably.If the over-voltage exceeds certain amplitude,the capacitor will be damaged.This paper aims at the capacitor banks in the 35 kV side of Shanghai Xu-xing 500 kV substation,and applies ATP-EMTP to simulate the over-voltages generated by operating the switches under different angles of the source.Finally,according to the results of simulation and theoretical analysis,a best choice(i.e.angles of the source) to switch on capacitor banks is proposed.In this case the over-voltage on the capacitor will be limited to lowest.展开更多
In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is...In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.展开更多
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p...Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.展开更多
基金supported of the Fundamental Research Founds for the Central Universities
文摘With the development of power systems,a large number of shunt capacitors are used to improve power quality in the distribution network.The shunt capacitor banks are operated much frequently,as a result,the capacitor banks will bear large numbers of over-voltage inevitably.If the over-voltage exceeds certain amplitude,the capacitor will be damaged.This paper aims at the capacitor banks in the 35 kV side of Shanghai Xu-xing 500 kV substation,and applies ATP-EMTP to simulate the over-voltages generated by operating the switches under different angles of the source.Finally,according to the results of simulation and theoretical analysis,a best choice(i.e.angles of the source) to switch on capacitor banks is proposed.In this case the over-voltage on the capacitor will be limited to lowest.
文摘In distribution systems,network reconfiguration and capacitor placement are commonly used to diminish power losses and keep voltage profiles within acceptable limits.Moreover,the problem of DG allocation and sizing is great important.In this work,a combination of a fuzzy multi-objective approach and bacterial foraging optimization(BFO) as a meta-heuristic algorithm is used to solve the simultaneous reconfiguration and optimal sizing of DGs and shunt capacitors in a distribution system.Each objective is transferred into fuzzy domain using its membership function.Then,the overall fuzzy satisfaction function is formed and considered a fitness function inasmuch as the value of this function has to be maximized to gain the optimal solution.The numerical results show that the presented algorithm improves the performance much more than other meta-heuristic algorithms.Simulation results found that simultaneous reconfiguration with DG and shunt capacitors allocation(case 5) has 77.41%,42.15%,and 56.14%improvements in power loss reduction,load balancing,and voltage profile indices,respectively in 33-bus test system.This result found 87.27%,35.82%,and 54.34%improvements of mentioned indices respectively for 69-bus system.
文摘Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs.