期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Determination of initial cable force of cantilever casting concrete arch bridge using stress balance and influence matrix methods 被引量:12
1
作者 TIAN Zhong-chu PENG Wen-ping +2 位作者 ZHANG Jian-ren JIANG Tian-yong DENG Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3140-3155,共16页
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf... Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge. 展开更多
关键词 concrete arch bridge cantilever casting initial cable force stress balance method influence matrix method
在线阅读 下载PDF
Constitutive relationship of ionic polymer-metal composite and static response character of its cantilever setup to voltage 被引量:1
2
作者 唐华平 聂拓 +3 位作者 唐运军 殷陈峰 唐春喜 王桥医 《Journal of Central South University of Technology》 EI 2008年第3期387-391,共5页
As a new ionic polymer-metal composite(IPMC) for artificial muscle,the mechanical performance parameters and the relationship between the deformation and the electrical parameters of the IPMC were studied. With the di... As a new ionic polymer-metal composite(IPMC) for artificial muscle,the mechanical performance parameters and the relationship between the deformation and the electrical parameters of the IPMC were studied. With the digital speckle correlation method,the constitutive relationship of the IPMC was confirmed. With non-contact photography measurement,a cantilever setup was designed to confirm the relationship between the deformation of the IPMC film and the applied voltage. The relationship curve of tip displacement of the IPMC cantilever setup vs the voltage was achieved. The results indicate that the IPMC is isotropic,its elastic modulus is 232 MPa and Poisson ratio is 0.163. The curve achieved from the test of the tip displacement of the IPMC cantilever setup shows that the tip displacement reaches the maximum when the stimulated voltage is 5 V. And the tip displacement descends largely when the frequency of the applied voltage is between 30 mHz and 100 mHz. 展开更多
关键词 constitutive relationship ionic polymer-metal composite(IPMC) cantilever setup static response
在线阅读 下载PDF
Study on adhesively-bonded surface of tapered double cantilever specimen made of aluminum foam affected with shear force
3
作者 孙洪鹏 CHO Jae-ung 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4521-4527,共7页
Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials.It presents a number of advantages,such as low densi... Aluminum foam is widely used in diverse areas to minimize the weight and maximize the absorption of shock energy in lightweight structures and various bio-materials.It presents a number of advantages,such as low density,incombustibility,non-rigidity,excellent energy absorptivity,sound absorptivity and low heat conductivity.The aluminum foam with an air cell structure was placed under the TDCB Mode II tensile load by using Landmark equipment manufactured by MTS to examine the shear failure behavior.The angle of the tapered adhesively-bonded surfaces of specimens was designated as a variable,and three models were developed with the inclined angles differing from one another at 6°,8° and 10°.The specimens with the inclined angles of 6°,8° and 10° have the maximum reaction forces of 168 N,194 N when the forced displacements are 6,5 and 4.2 mm respectively.There are three specimens with the inclined angles of 10°,8° and 6° in the order of maximum reaction force.As the analysis result,the maximum equivalent stresses of 0.813 MPa and 0.895 MPa happened when the forced displacements of 6 mm and 5 mm proceeded at the models of 6° and 8°,respectively.A simulation was carried out on the basis of finite element method and the experimental design.The results of the experiment and the simulation analysis are shown not different from each other significantly.Thus,only a simulation could be confirmed to be performed in substitution of an experiment,which is costly and time-consuming in order to determine the shearing properties of materials made of aluminum foam with artificial data. 展开更多
关键词 ADHESIVE DISPLACEMENT force reaction shearing fracture characteristic tapered double cantilever beam(TDCB)
在线阅读 下载PDF
Natural vibration of cantilever porous twisted plate with variable thickness in different directions
4
作者 Y.X.Hao Y.Y.Liu +3 位作者 W.Zhang L.T.Liu K.C.Sun S.W.Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期200-216,共17页
In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are stu... In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures. 展开更多
关键词 Porous cantilever twisted plate Variable thickness Natural vibration Frequency veering Mode exchange
在线阅读 下载PDF
Numerical Simulation of the Model Ice Flexural Strength Based on Tsai-Wu Failure Criterion
5
作者 GUO Chun−yu ZHANG Cheng−sen +1 位作者 WANG Chao WANG Chun−hui 《船舶力学》 北大核心 2025年第6期976-985,共10页
In the past few decades,the navigation performance of ships and structures in ice-covered waters has not been fully studied,especially the influence of ice mechanical properties on icebreaking ability.Ice bending stre... In the past few decades,the navigation performance of ships and structures in ice-covered waters has not been fully studied,especially the influence of ice mechanical properties on icebreaking ability.Ice bending strength is a key ice parameter for predicting ship ice loads,and accurate ice bending strength is also the key to scaling model tests results to real ship.However,numerical simulation studies on model ice bending strength of ice tanks are often neglected.In this paper,an explicit finite element method model is used to simulate the ice cantilever beam test,and the failure load and bending strength of the ice are obtained.In this model,the Tsai-Wu failure criterion is used as the material constitutive model,and the required simulation parameters are obtained from the model ice test in ice tank.Parameter sensitivity analysis shows that the cantilever beam size of the model ice has a significant effect on the flexural strength.The results show that proper rounding at the root of the cantilever beam is beneficial to reduce stress concentration and obtain more accurate bending strength;the thickness,width and length of the cantilever beam should conform to a certain ratio,and consistent with the ITTC recommended reference.Therefore,the results of this study can promote model ice experiments and numerical studies and provide ice strength data support for ship design and polar ship maneuvering. 展开更多
关键词 model ice LS-DYNA Tsai-Wu failure criterion cantilever beam test
在线阅读 下载PDF
Pressure relief and structure stability mechanism of hard roof for gob-side entry retaining 被引量:5
6
作者 韩昌良 张农 +2 位作者 李宝玉 司光耀 郑西贵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4445-4455,共11页
In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lat... In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lateral cantilever fractured structural mechanical model was established on the basis of clarification for the stress environment of gob-side entry retaining, and the equation of roof given deformation and the balance judgment for fracture block were obtained. The optimal cantilever length was proposed based on the comparison of roof structural characteristics and the stress, deformation law of surrounding rocks under six different cantilever lengths by numerical simulation method. Double stress peaks exist on the sides of gob-side entry retaining and the entry located in the low stress area. The pressure of gob-side entry retaining can be relieved by reducing the cantilever length. However, due to the impact of arch structure of rock beam, unduly short cantilever would result in insufficient pressure relief and unduly long cantilever would bring larger roof stress which results in intense deformation. Therefore, there is optimal cantilever length, which was 7-8 m in this project that enables to achieve the minimum deformation and the most stabilized rock structure of entry retaining. An engineering case of gob-side entry retaining with the direct coverage of 10 m thick hard limestone roof was put forward, and the measured data verified the reasonability of conclusion. 展开更多
关键词 HARD ROOF pressure RELIEF cantilever LENGTH DOUBLE
在线阅读 下载PDF
Ground movement mechanism in tectonic stress metal mines with steep structure planes 被引量:4
7
作者 夏开宗 陈从新 +2 位作者 刘秀敏 郑元 付华 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2092-2104,共13页
When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is use... When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements. 展开更多
关键词 mining engineering underground mining ground movement horizontal stress COLUMN cantilever pillar
在线阅读 下载PDF
Deformation mechanism and roof pre-splitting control technology of gob-side entry in thick hard main roof full-mechanized longwall caving panel 被引量:1
8
作者 WANG Hao-sen HE Man-chao +6 位作者 WANG Jiong YANG Gang MAZi-min MING Can WANG Rui FENG Zeng-chao ZHANG Wen-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3206-3224,共19页
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro... This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry. 展开更多
关键词 deformation mechanism hard roof gob-side entry cantilever beam roof pre-spliting
在线阅读 下载PDF
Effect of concrete creep on pre-camber of continuous rigid-frame bridge
9
作者 贺国京 李媛媛 +1 位作者 邹中权 段靓靓 《Journal of Central South University》 SCIE EI CAS 2008年第S1期337-341,共5页
The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculat... The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions. 展开更多
关键词 CREEP pre-stressed concrete continuous rigid-frame bridge cantilever CASTING method PRE-CAMBER
在线阅读 下载PDF
Analysis of in-bore balloting and control of jump variability
10
作者 Satoru Shoji 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期721-734,共14页
The variability of projectile jump is the long-term issue to improve weapon accuracy.Nowadays we have many simulation codes to predict Jump.However,these codes cannot explain explicitly how the variability of jump ari... The variability of projectile jump is the long-term issue to improve weapon accuracy.Nowadays we have many simulation codes to predict Jump.However,these codes cannot explain explicitly how the variability of jump arises.The aims of this paper are,(1)to give fundamental explanations for the variability of Jump,and (2)to offer design factors to make the variability of Jump less.The model presented here was formulated in accordance with the transition of the system in reverse way commencing from the target impact stage to the chambering stage.Objects of the simulation are generic 120mm smooth bore and long rod system which are extremely simplified to the vibration of tube,the spring effect by sabot,and the free-ends beam of penetrator.Parametric calculations clarified that high Jump-variability is generated only when the last rebound is on the muzzle line.This particular state of rebound is achieved by many combinations of input-variable.Guide map named JV-Chart is proposed to show the high Jumpvariability zone. 展开更多
关键词 JUMP VARIABILITY Coupled vibration In-bore balloting cantilever TUBE
在线阅读 下载PDF
Improved model to solve influence coefficients of work roll deflection
11
作者 赵铁勇 肖宏 《Journal of Central South University》 SCIE EI CAS 2010年第5期1000-1005,共6页
According to the concept of virtual bending force,a rational explanation for SHOHET's model was presented. Considering the deformation characters of the work rolls in four-high mill,the deformation model of the wo... According to the concept of virtual bending force,a rational explanation for SHOHET's model was presented. Considering the deformation characters of the work rolls in four-high mill,the deformation model of the work roll was regarded as a cantilever beam and new influence coefficients were deduced.The effect of the bending force was taken into account independently. Therefore,the contribution to work roll deflection caused by rolling load,rolling pressure between rolls and bending force can be got from the new formulas.To validate the accuracy of the formulas,the results obtained from the new formulas were compared with those from SHOHET's formulas.It is found that they highly coincide,which illustrates that the formulas are reliable. 展开更多
关键词 work roll influence coefficient cantilever beam bending force
在线阅读 下载PDF
Effects of Adhesive Characteristic on the Test Results of Damping Material's DMP
12
作者 胡卫强 王敏庆 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第4期281-286,共6页
In the measurement of damping material's dynamic mechanical performance(DMP) using flexural resonating cantilever beam method,the specimen's adhesive characteristic influences the test precision and accuracy. ... In the measurement of damping material's dynamic mechanical performance(DMP) using flexural resonating cantilever beam method,the specimen's adhesive characteristic influences the test precision and accuracy. Taking its effect into account,the improved measurement equations based on the resonance method are presented. The simulated results show that,for the sake of weakening the adhesive's influence on the measured results,the adhesive should be spreaded as thin as possible when specimen is prepared,the adhesive's density and loss factor should be selected as small as possible also,and its Young's modulus should be selected according to the damping material being measured;the same adhesion condition effects differently on the test results of different damping materials,i.e. the error due to the adhesive is more inconspicuous if the damping layer has bigger thickness,modulus,loss factor and a certain density according to the damping material being measured. These conclusions provide theoretical basis for selecting adhesive,improving adhesion technology,and designing specimen. 展开更多
关键词 oscillation and wave damping material flexural resonating cantilever beam method specimen in free damping form adhesive characteristic
在线阅读 下载PDF
Measurement and numerical analysis of influence of key stratum breakage on mine pressure in top-coal caving face with super great mining height
13
作者 李猛 张吉雄 +1 位作者 黄艳利 高瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1881-1888,共8页
To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with... To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation. 展开更多
关键词 super great mining height key stratum cantilever beam mine pressure manifestation under cover
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部