Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-re...Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-resolution face recognition , researchers have shown that utilizing spatial information is beneficial to improving the recognition accuracy , mainly because the pixels of each face are not independent but spatially correlated.However , for a multi-resolution scenario , there are no related works.Therefore , a method named spatial regularization of canonical correlation analysis ( SRCCA ) is developed for LR face recognition to improve the performance of CCA by the regularization utilizing spatial information of different resolution faces.Furthermore , the impact of LR and HR spatial regularization terms on LR face recognition is analyzed through experiments.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
基金Supported by the National Natural Science Foundation of China(6117015161070133+2 种基金60903130)the Natural Science Research Project of Higher Education of Jiangsu Province(12KJB520018)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NP2011030)
文摘Canonical correlation analysis ( CCA ) based methods for low-resolution ( LR ) face recognition involve face images with different resolutions ( or multi-resolutions ), i.e.LR and high-resolution ( HR ) .For single-resolution face recognition , researchers have shown that utilizing spatial information is beneficial to improving the recognition accuracy , mainly because the pixels of each face are not independent but spatially correlated.However , for a multi-resolution scenario , there are no related works.Therefore , a method named spatial regularization of canonical correlation analysis ( SRCCA ) is developed for LR face recognition to improve the performance of CCA by the regularization utilizing spatial information of different resolution faces.Furthermore , the impact of LR and HR spatial regularization terms on LR face recognition is analyzed through experiments.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.