期刊文献+
共找到22,878篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress of catalysts for synthesis of glycerol carbonate form glycerol and urea
1
作者 WANG Yuhua LI Hongguang +3 位作者 DING Liang KOU Yongli QI Wenbo ZHAO Ning 《燃料化学学报(中英文)》 北大核心 2025年第6期964-982,共19页
Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the perform... Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the performance of the catalysts still cannot meet the needs of industrialization.In this paper,research progress of the homogeneous and heterogeneous catalysts of the reaction over the past 20 years were reviewed systematically.According to the types and active centers of catalysts,the catalysts were classified systematically and analyzed in detail.The typical reaction mechanisms were also summarized.The research and development direction of catalysts is made more explicit through systematic classification and mechanism analysis.The article reveals more novel catalysts have been designed and used for the reaction,such as mixed metal oxides with special structures,solid wastes and non-metallic materials.This work summarized the current state of research and prospected possible routes for design of novel catalysts.It is hoped that this review can provide some references for developing efficient catalysts. 展开更多
关键词 glycerol carbonate GLYCEROL UREA catalystS
在线阅读 下载PDF
Roles of Sn-promoter and carbon nanotubes treatment on supported CoB catalysts for hydrogen production
2
作者 SHI Limin LI Yanbo +2 位作者 LEI Qiang REN Rongzhi WANG Yujing 《燃料化学学报(中英文)》 北大核心 2025年第5期703-712,共10页
Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discu... Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discussed.It is found that after the addition of Sn promoter,the specific surface area and the generation of active CoB phase are increased,while the oxidation treatment of CNTs results in more loading amounts of active components and enrichment of electron at active sites as well as large surface area.Consequently,the Sn-doped CoB catalysts supported on CNTs with oxidation treatment exhibits a significantly improved activity with a high H_(2)generation rate of 2640 mL/(min·g).Meanwhile,this catalyst shows a low activation energy of 43.7 kJ/mol and relatively high reusability. 展开更多
关键词 sodium borohydride hydrolysis CoB-based catalysts Sn promoter carbon nanotubes oxidation treatment
在线阅读 下载PDF
Methods for the formation of M-N_(x)-C active sites on single-atom catalysts and their role in persulfate activation by non-radical paths
3
作者 SI Wen-hao SI Jin-xuan +4 位作者 WANG Kang-jun QI Fei CHEN Jia-bin ZENG Ze-quan HUANG Zhang-gen 《新型炭材料(中英文)》 北大核心 2025年第5期993-1015,共23页
In recent years,numer-ous single-atom catalysts(SACs)have been synthesized to activate persulfate(PS)by a non-radical pathway because of its high se-lectivity,and activity for the cata-lyst.Metal-nitrogen-carbon(M-N_(... In recent years,numer-ous single-atom catalysts(SACs)have been synthesized to activate persulfate(PS)by a non-radical pathway because of its high se-lectivity,and activity for the cata-lyst.Metal-nitrogen-carbon(M-N_(x)-C)has been identified as the key active site in SACs.Although methods for preparing SACs have been extensively reported,a systematic summary of the direct construction of M-N_(x)-C,espe-cially unconventional metal-nitrogen-carbon(UM-N_(x)-C,x≠4),on SACs for PS non-radical activation has still not been reported.The role of the M-N_(x)-C active sites on PS non-radical activation is discussed and methods for the formation of M-N_(x)-C and UM-N_(x)-C active sites in SACs and the effect of catalyst carriers such as carbon nitride(g-C_(3)N_(4)),MOFs,COFs,and other car-bon materials are reviewed.Direct and indirect methods,especially for UM-N_(x)-C active site formation,are also elaborated.Factors affecting the formation of a M-N_(x)-C active site on SACs are also discussed.Prospects for the use of M-N_(x)-C active sites for the non-radical activation of PS by SACs to remove organic contaminants from wastewater are evaluated. 展开更多
关键词 Single-atom catalysts PERSULFATE Non-radical pathway Unconventional metal-nitrogen-carbon active site Organic contaminants
在线阅读 下载PDF
Strong electronic metal-support interactions for enhanced hydroformylation activity and stability over Rh single-atom catalysts through phosphorus doping
4
作者 Boyang Fu Ping Ma +11 位作者 Xiaoyang Ding Kaifu Cai Limin Sun Yujin Zhu Qiwei Yin Yihao Sun Tianle Liu Yuzhen Li Yuxing Xu Jian Gu Haowen Ma Junling Lu 《中国科学技术大学学报》 北大核心 2025年第3期2-10,1,I0001,共11页
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d... By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability. 展开更多
关键词 heterogeneous hydroformylation Rh single-atom catalysts electronic metal-support interactions phosphorus doping
在线阅读 下载PDF
Design and Optimization of Anode Catalysts for Direct Ethanol Fuel Cells:Advances and Challenges in C-C bond Activation and Selective Modulation of the C1 Pathway
5
作者 Kai-Chi Qin Meng-Tian Huo +3 位作者 Yu Liang Si-Yuan Zhu Zi-Hao Xing Jin-Fa Chang 《电化学(中英文)》 北大核心 2025年第8期1-22,共22页
Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit... Direct ethanol fuel cells(DEFCs)are a promising alternative to conventional energy sources,offering high energy density,environmental sustainability,and operational safety.Compared to methanol fuel cells,DEFCs exhibit lower toxicity and a more mature preparation process.Unlike hydrogen fuel cells,DEFCs provide superior storage and transport feasibility,as well as cost-effectiveness,significantly enhancing their commercial viability.However,the stable C-C bond in ethanol creates a high activation energy barrier,often resulting in incomplete electrooxidation.Current commercial platinum(Pt)-and palladium(Pd)-based catalysts demonstrate low C-C bond cleavage efficiency(<7.5%),severely limiting DEFC energy output and power density.Furthermore,high catalyst costs and insufficient activity impede large-scale commercialization.Recent advances in DEFC anode catalyst design have focused on optimizing material composition and elucidating catalytic mechanisms.This review systematically examines developments in ethanol electrooxidation catalysts over the past five years,highlighting strategies to improve C1 pathway selectivity and C-C bond activation.Key approaches,such as alloying,nanostructure engineering,and interfacial synergy effects,are discussed alongside their mechanistic implications.Finally,we outline current challenges and future prospects for DEFC commercialization. 展开更多
关键词 Direct ethanol fuel cells Ethanol electrooxidation C-C bond cleavage ELECTROCATALYSIS Anode catalyst
在线阅读 下载PDF
Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping
6
作者 Chang Lan Jing-Sen Bai +8 位作者 Xin Guan Shuo Wang Nan-Shu Zhang Yu-Qing Cheng Jin-Jing Tao Yu-Yi Chu Mei-Ling Xiao Chang-Peng Liu Wei Xing 《电化学(中英文)》 北大核心 2025年第9期56-68,共13页
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor... The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications. 展开更多
关键词 Oxygen reduction reaction Proton exchange membrane fuel cell Single-atom catalyst Co-N-C Boron doping
在线阅读 下载PDF
High temperature shock synthesis of Ni-N-C single-atom catalysts for efficient CO_(2) electroreduction to CO
7
作者 PANG Peiqi XU Changjian +5 位作者 LI Ruizhu GAO Na DU Xianlong LI Tao WANG Jianqiang XIAO Guoping 《燃料化学学报(中英文)》 北大核心 2025年第8期1162-1172,共11页
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re... Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment. 展开更多
关键词 CO_(2)electrocatalytic reduction high temperature shock method single atom catalysts coordination
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
8
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Corrigendum to“Mechanistic Insights into Water-Mediated CO_(2)Electrochemical Reduction Reactions on Cu@C_(2)N Catalysts:A Theoretical Study”[Acta Physico-Chimica Sinica(2024)40,2303040]
9
《物理化学学报》 北大核心 2025年第5期144-144,共1页
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers... Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China. 展开更多
关键词 chemical engineeringdalian theoretical study water mediated Cu C N catalysts fine chemicalsschool CO electrochemical reduction chemical engineeringstate
在线阅读 下载PDF
Peroxymonosulfate Activation by CoFe_(2)O_(4)/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic
10
作者 LI Jianjun CHEN Fangming +5 位作者 ZHANG Lili WANG Lei ZHANG Liting CHEN Huiwen XUE Changguo XU Liangji 《无机材料学报》 北大核心 2025年第4期440-448,I0022-I0024,共12页
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d... Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation. 展开更多
关键词 magnetic composite catalyst PEROXYMONOSULFATE CoFe_(2)O_(4)/MgAl-LDH advanced oxidation process antibiotic
在线阅读 下载PDF
Research progress on metal-support interactions over Ni-based catalysts for CH_(4)-CO_(2)reforming reaction
11
作者 SUN Kai JIANG Jianfei +4 位作者 LIU Zixuan GENG Shiqi LIU Zhenmin YANG Jiaqian LI Shasha 《燃料化学学报(中英文)》 北大核心 2025年第4期434-451,共18页
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni... With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies. 展开更多
关键词 CO_(2)utilization CH_(4)-CO_(2)reforming Ni-based catalysts metal-support interactions supports
在线阅读 下载PDF
Bimetallic MOF(Mn/Co)constructed by active dicyandiamide linker for a promising combustion catalyst of solid propellant
12
作者 Mingcheng Ge Xian Xu +5 位作者 Ze Su Ye Zhong Binfang Yuan Huisheng Huang Jianguo Zhang Zhimin Li 《Defence Technology(防务技术)》 2025年第8期203-212,共10页
Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was con... Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was constructed by an active dicyandiamide(DCA)linker,Mn^(2+),Co^(2+)centers,and an 1-ethylimidazole(EIM)ligand.1 possesses good thermal stability(Tp=205℃),high energy density(Eg=24.34 kJ/g,Ev=35.93 kJ/cm^(3)),and insensitivity to impact and frictional stimulus.The catalytic effects of 1 contrasted to monometallic coordination compounds Mn(EIM)_(4)(DCA)_(2)(2)and Co(EIM)_(4)(DCA)_(2)(3)on the thermal decomposition of AP/RDX composite were investigated by a DSC method.The decomposition peak temperatures of AP and RDX of the composite decreased to 335.8℃ and 206.4℃,respectively,and the corresponding activation energy decreased by 27.3%and 43.6%,respectively,which are better than the performances of monometallic complexes 2 and 3.The gas products in the whole thermal decomposition stage of the sample were measured by TG-MS and TG-IR,and the catalytic mechanism of 1 to AP/RDX was further analyzed.This work reveal potential application of bimetallic MOFs in the composite solid propellants. 展开更多
关键词 Bimetallic MOF Solid propellant Combustion catalyst Thermal decomposition
在线阅读 下载PDF
Biomass-derived N-doped porous carbon supported single Fe atoms as low-cost and high-performance electrocatalysts for oxygen reduction reaction
13
作者 WANG Li-ping XIAO Jin +1 位作者 MAO Qiu-yun ZHONG Qi-fan 《Journal of Central South University》 2025年第4期1368-1383,共16页
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp... Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost. 展开更多
关键词 oxygen reduction reaction single-atom catalyst porous carbon MICROPORE biomass
在线阅读 下载PDF
CATALYSTS FOR SYNTHESIS OF N-VINYLPYRROLIDONE 被引量:15
14
作者 崔英德 易国斌 +1 位作者 廖列文 康正 《化工学报》 EI CAS CSCD 北大核心 2000年第4期443-445,共3页
关键词 N-VINYLPYRROLIDONE catalyst SYNTHESIS
在线阅读 下载PDF
Study on iron-manganese catalysts for Fischer-Tropsch synthesis 被引量:5
15
作者 MOSTAFA FEYZI FATANEH JAFARI 《燃料化学学报》 EI CAS CSCD 北大核心 2012年第5期550-557,共8页
铁锰催化剂被一起沉淀方法准备。催化剂的描述被使用 X 光衍射(XRD ) 执行,扫描电子显微镜学(SEM ) ,温度程序减小(TPR ) , N2 吸附解吸附作用大小。从 Fischer-Tropsch 合成的催化表演测试的结果证明铁锰催化剂对催化剂作文和材料... 铁锰催化剂被一起沉淀方法准备。催化剂的描述被使用 X 光衍射(XRD ) 执行,扫描电子显微镜学(SEM ) ,温度程序减小(TPR ) , N2 吸附解吸附作用大小。从 Fischer-Tropsch 合成的催化表演测试的结果证明铁锰催化剂对催化剂作文和材料来源敏感过度。当 CH4 和 CO2 由使用从铁(II ) 准备的铁锰催化剂减少了时, C24 轻石蜡增加了,这被发现当 CH4 和 CO2 由使用从铁(II ) 准备的铁锰催化剂减少了时硫酸盐(催化剂) 。催化剂的活动和选择处于不同运作的条件被学习。结果证明为 C24 轻石蜡生产的最好的运作的条件在 260 点是 H2/CO=1/1 (GHSV=2400 h1 ) 展开更多
关键词 iron-manganese catalyst catalytic performance operational conditions Fischer-Tropsch synthesis
在线阅读 下载PDF
Regeneration of waste SCR catalyst by air lift loop reactor 被引量:13
16
作者 LEE Jung-bin EOM Yong-seok +1 位作者 KIM Jun-han CHUN Sung-nam 《Journal of Central South University》 SCIE EI CAS 2013年第5期1314-1318,共5页
A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic a... A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst. 展开更多
关键词 nitrogen oxide REGENERATION selective catalyst reduction air lift loop reactor catalyst
在线阅读 下载PDF
One step NaBH_4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells : Synthe sis and characte rization 被引量:4
17
作者 Napha Sudachom Chompunuch Warakulwit +2 位作者 Chaiwat Prapainainar Thongthai Witoon Paweena Prapainainar 《燃料化学学报》 EI CAS CSCD 北大核心 2017年第5期596-607,共12页
The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succini... The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC. 展开更多
关键词 ternary catalyst ethanol electrooxidation reaction multiwall carbon nanotubes mesoporous carbon
在线阅读 下载PDF
Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming 被引量:1
18
作者 Fabiola Nerina Agüero Jose Antonio Alonso +1 位作者 Maria Teresa Fernández-Díaz Luis Eduardo Cadus 《燃料化学学报》 EI CAS CSCD 北大核心 2018年第11期1332-1341,共10页
Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose,La_(1-x)Mg_xAl_(1-y)Ni_yO_3(x = 0.1; y = 0,0.1,0.2,0.3) perovs... Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose,La_(1-x)Mg_xAl_(1-y)Ni_yO_3(x = 0.1; y = 0,0.1,0.2,0.3) perovskites were synthetized by the citrate method.Ni segregation is evident for a substitution level higher than 0. 2. The segregation of Ni as NiO generated species interacts with different metal-support after the reduction step. The y = 0.1 catalyst presents the highest H_2 yield value about 85% during reaction time,with low mean values of CH_4 and CO selectivities of 3.4% and 11%,respectively and a low carbon formation. The better performance of y = 0.1 catalyst could be attributed to the minor proportion of segregated phases,thus a controlled expulsion of Ni is successfully reached. 展开更多
关键词 perovskites catalyst DESIGN ETHANOL STEAM REFORMING
在线阅读 下载PDF
Distribution and State of Ni Contaminants on Resid Fluid Catalytic Cracking Catalysts—Characterization by AEM, EPMA, UV-Vis and TPR 被引量:1
19
作者 Xue Yongfang (Research Institute of Petroleum Processing, Beijing 100083) 《石油学报(石油加工)》 EI CAS CSCD 北大核心 1997年第S1期148-153,共6页
DistributionandStateofNiContaminantsonResidFluidCatalyticCrackingCatalysts—CharacterizationbyAEM,EPMA,UVVisa... DistributionandStateofNiContaminantsonResidFluidCatalyticCrackingCatalysts—CharacterizationbyAEM,EPMA,UVVisandTPRXueYongfang... 展开更多
关键词 DISTRIBUTION STATE Ni contaminant equilibrium catalystS resid FLUID CATALYTIC CRACKING process
在线阅读 下载PDF
Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide 被引量:1
20
作者 Zahra Gholami Noor Asmawati Mohd Zabidi +1 位作者 Fatemeh Gholami Mohammadtaghi Vakili 《燃料化学学报》 EI CAS CSCD 北大核心 2016年第7期815-821,共7页
Bimetallic Co /Fe catalysts supported on carbon nanotubes( CNTs) were prepared,and niobium( Nb) was added as promoter to the 70 Co ∶30Fe /CNT catalyst. The physicochemical properties of the catalysts were characteriz... Bimetallic Co /Fe catalysts supported on carbon nanotubes( CNTs) were prepared,and niobium( Nb) was added as promoter to the 70 Co ∶30Fe /CNT catalyst. The physicochemical properties of the catalysts were characterized,and the catalytic performances were analyzed at the same operation conditions( H_2 ∶CO( volume ratio) = 2 ∶1,p = 1 MPa,and t = 260 ℃) in a tubular fixed-bed microreactor system. The addition of Nb to the bimetallic catalyst decreases the average size of the oxide nanoparticles and improves the reducibility of the bimetallic catalyst. Evaluation of the catalyst performance in a Fischer-Tropsch reaction shows that the catalyst results in high selectivity to methane,and the selectivity to C_(5+) increased slightly in the bimetallic catalyst unlike that in the monometallic catalysts. The addition of 1% Nb to the bimetallic catalyst increases CO conversion and selectivity to C_(5+). Meanwhile,a decrease in methane selectivity is observed. 展开更多
关键词 Fischer-Tropsch synthesis bimetallic catalyst niobium promoter carbon nanotubes
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部