Aim Fragile X mental retardation protein (FMRP) is an RNA-binding protein important for the control of translation and synaptic function. The mutation or silencing of FMRP causes Fragile X syndrome (FXS) , which l...Aim Fragile X mental retardation protein (FMRP) is an RNA-binding protein important for the control of translation and synaptic function. The mutation or silencing of FMRP causes Fragile X syndrome (FXS) , which leads to intellectual disability and social impairment. γ-aminobutyric acid (GABA) is the major inhibitory neuro- transmitter of the mammalian central nervous system, and its metabotropic GABAB receptor has been implicated in various mental disorders. The GABAB receptor agonist baclofen has been shown to improve FXS symptoms in a mouse model and in human patients, suggesting the role of GABAB receptor on FMRP regulation. Here we investi- gated the signaling events linking the GABAB receptor and FMRP. Methods Western blot was used in this study to detect protein expression and kinase phosphorylation in cerebellar granule neurons. For key molecules in signal- ling pathway, RNAi was used in MEFs to confirm the results in neurons. Results GABAB receptor activation up- regulated cAMP response element binding protein-dependent Fmrp expression in cultured mouse cerebellar granule neurons via two distinct mechanisms: the transactivation of insulin-like growth factor-1 receptor and activation of protein kinase C. In addition, a positive allosteric modulator of the GABAB receptor, CGP7930, stimulated Fmrp expression in neurons. Conclusion These results suggest a role for GABAB receptor in Fmrp regulation and a po- tential interest of GABAB receptor signaling in FXS improvement.展开更多
OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated w...OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated with weak agonists,Aβ42 and Ac2-26,before stimulation with a strong agonist,WKYMVm.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using FPR2 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first or third intracellular loop(IL1 or IL3,respectively).RESULTS Aβ42 did not induce significant Ca^(2+) mobilization,but positively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction in a dose-variable manner within a narrow range of ligand concentrations.Treating FPR2-expressing cells with Ac2-26,a peptide with anti-inflammatory activity,negatively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction.Intramolecular FRET assay showed that stimulation of the receptor constructs with Aβ42 brought the C-terminal domain closer to IL1 but away from IL3.An opposite conformational change was induced by Ac2-26.The FPR2 conformation induced by Aβ42 corresponded to enhanced ERK phosphorylation and attenuated p38 MAPK phosphorylation,whereas Ac2-26 induced FPR2 conformational change corresponding to elevated p38 MAPK phosphorylation and reduced ERK phosphorylation.CONCLUSION Aβ42 and Ac2-26 induce different conformational changes in FPR2.These findings provide a structural basis for FPR2 mediation of inflammatory vs anti-inflammatory functions and identify a type of receptor modulation that differs from the classic positive and negative allosteric modulation.展开更多
Class A scavenger receptor(SR-A) plays an important role in foam cell formation.However, the mechanism underlying the internalization of the receptor-ligand complexes remains unclear.The aim of the present study was t...Class A scavenger receptor(SR-A) plays an important role in foam cell formation.However, the mechanism underlying the internalization of the receptor-ligand complexes remains unclear.The aim of the present study was to investigate the molecular mechanism to regulate SR-A-mediated intracellular lipid accumulation in macrophages A pull-clown assay was performed and glucoseregulated protein 78(GRP78) was identified to bind with the cytoplasmic domain of SR-A(CSR-A).Immunoprecipitation and artificially expressed protein binding assay demonstrated the direct specific binding of GRP78 with SR-A in cells.Indirect immunofluorescence assay and western blot analysis showed their co-localization in membrane and cytoplasm.Over-expression of GRP78 specifically inhibited SR-A-mediated uptake of fluorescent acetylated low-density lipoprotein, a specific ligand for SR-A, without altering cellular SR-A expression and binding ability, and significantly inhibited cholesterol ester accumulation in cells, which can be partly attributed to the suppression of c-Jun-NH2-terminal kinase signaling pathway.These results suggest that GRP78 may act as an inhibitor of SR-A-mediated internalization of modified low-density lipoprotein into macrophages(C) 2009 Elsevier Inc.All rights reserved.展开更多
文摘Aim Fragile X mental retardation protein (FMRP) is an RNA-binding protein important for the control of translation and synaptic function. The mutation or silencing of FMRP causes Fragile X syndrome (FXS) , which leads to intellectual disability and social impairment. γ-aminobutyric acid (GABA) is the major inhibitory neuro- transmitter of the mammalian central nervous system, and its metabotropic GABAB receptor has been implicated in various mental disorders. The GABAB receptor agonist baclofen has been shown to improve FXS symptoms in a mouse model and in human patients, suggesting the role of GABAB receptor on FMRP regulation. Here we investi- gated the signaling events linking the GABAB receptor and FMRP. Methods Western blot was used in this study to detect protein expression and kinase phosphorylation in cerebellar granule neurons. For key molecules in signal- ling pathway, RNAi was used in MEFs to confirm the results in neurons. Results GABAB receptor activation up- regulated cAMP response element binding protein-dependent Fmrp expression in cultured mouse cerebellar granule neurons via two distinct mechanisms: the transactivation of insulin-like growth factor-1 receptor and activation of protein kinase C. In addition, a positive allosteric modulator of the GABAB receptor, CGP7930, stimulated Fmrp expression in neurons. Conclusion These results suggest a role for GABAB receptor in Fmrp regulation and a po- tential interest of GABAB receptor signaling in FXS improvement.
基金supported by National Natural Science Foundation of China(31470856 to RDY)the Science and Technology Development Fund of Macao(FDCT 072/2015/A2)the University of Macao(SRG2015-00047-ICMS-QRCM)
文摘OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2(FPR2)mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner.METHODS Cells expressing FPR2 were incubated with weak agonists,Aβ42 and Ac2-26,before stimulation with a strong agonist,WKYMVm.Calcium mobilization,c AMP inhibition and MAP kinase activation were measured.Intramolecular FRET were determined using FPR2 constructs with an ECFP attached to the C-terminus and a Fl As H binding motif embedded in the first or third intracellular loop(IL1 or IL3,respectively).RESULTS Aβ42 did not induce significant Ca^(2+) mobilization,but positively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction in a dose-variable manner within a narrow range of ligand concentrations.Treating FPR2-expressing cells with Ac2-26,a peptide with anti-inflammatory activity,negatively modulated WKYMVm-induced Ca^(2+) mobilization and c AMP reduction.Intramolecular FRET assay showed that stimulation of the receptor constructs with Aβ42 brought the C-terminal domain closer to IL1 but away from IL3.An opposite conformational change was induced by Ac2-26.The FPR2 conformation induced by Aβ42 corresponded to enhanced ERK phosphorylation and attenuated p38 MAPK phosphorylation,whereas Ac2-26 induced FPR2 conformational change corresponding to elevated p38 MAPK phosphorylation and reduced ERK phosphorylation.CONCLUSION Aβ42 and Ac2-26 induce different conformational changes in FPR2.These findings provide a structural basis for FPR2 mediation of inflammatory vs anti-inflammatory functions and identify a type of receptor modulation that differs from the classic positive and negative allosteric modulation.
文摘Class A scavenger receptor(SR-A) plays an important role in foam cell formation.However, the mechanism underlying the internalization of the receptor-ligand complexes remains unclear.The aim of the present study was to investigate the molecular mechanism to regulate SR-A-mediated intracellular lipid accumulation in macrophages A pull-clown assay was performed and glucoseregulated protein 78(GRP78) was identified to bind with the cytoplasmic domain of SR-A(CSR-A).Immunoprecipitation and artificially expressed protein binding assay demonstrated the direct specific binding of GRP78 with SR-A in cells.Indirect immunofluorescence assay and western blot analysis showed their co-localization in membrane and cytoplasm.Over-expression of GRP78 specifically inhibited SR-A-mediated uptake of fluorescent acetylated low-density lipoprotein, a specific ligand for SR-A, without altering cellular SR-A expression and binding ability, and significantly inhibited cholesterol ester accumulation in cells, which can be partly attributed to the suppression of c-Jun-NH2-terminal kinase signaling pathway.These results suggest that GRP78 may act as an inhibitor of SR-A-mediated internalization of modified low-density lipoprotein into macrophages(C) 2009 Elsevier Inc.All rights reserved.