Coal bursts are typically associated with highly stressed coal.Most bursts occur during retreat mining(longwall mining or pillar recovery) in highly stressed locations like the tailgate corner of the longwall panel.Ot...Coal bursts are typically associated with highly stressed coal.Most bursts occur during retreat mining(longwall mining or pillar recovery) in highly stressed locations like the tailgate corner of the longwall panel.Others are associated with multiple seam interactions.However, a small but significant percentage of coal bursts have occurred during development or in outby locations unaffected by active mining.Most development bursts have been relatively small, but some have been highly destructive.No theory of coal bursts can be complete if it does not account for this type of event.This paper focusses on the development mining coal burst experience in the US, putting it into the context of the entire US coal burst database.The first documented development coal burst occurred almost exactly 100 years ago during slope drivage at the Sunnyside Mine in Utah.Sunnyside subsequently had a long history of bursts, mainly during retreat mining but also during development.Several Colorado mines have also experienced multiple development bursts.Many, but by no means all, of the development bursts in these western US coalfields have been associated with known faults.In the Central Appalachian coalfields, most development bursts have occurred in multiple seam situations.In some of these cases, however, there was no retreat mining in either seam.The paper closes with some lessons from this history, with implications for preventing such events in the future.展开更多
Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors ...Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors and rock bursts observed as transient states of air parameters in mining headings,are usually generated as a result of a change in the geometry of headings and the release of considerable amounts of gases. Particular significance is attributed to transient states caused by disasters, which are often accompanied by rapid incidents, presenting threats to the life and health of the underground crew.In Polish mining there are known examples of transient states of air parameters recorded during gasdynamic phenomena, e.g. tremors and rock bursts. The paper presents the case studies of rapid seismic incidents to show how records in mine monitoring systems broaden the knowledge about the transient states of air parameters in mining headings generated because of them.展开更多
In order to reach a large,untapped reserve of high-quality coal,D8 Cloverlick Mine proposed to mine a corridor nearly 600 m deep beneath the Benham Spur of Black Mountain,Kentucky’s highest peak.D8 Cloverlick Mine wa...In order to reach a large,untapped reserve of high-quality coal,D8 Cloverlick Mine proposed to mine a corridor nearly 600 m deep beneath the Benham Spur of Black Mountain,Kentucky’s highest peak.D8 Cloverlick Mine was extracting the Owl seam,but the corridor’s route lay approximately 20 m above century-old mine workings in the C–(Darby)seam.Adding to the concern,three serious coal bursts had recently occurred in nearby Owl seam workings.Maps of the old workings seemed to indicate that the underlying C–seam had been fully extracted.However,two of the coal bursts had occurred above areas where the C–Seam was also shown as mined out.Mine Safety and Health Administration(MSHA)Technical Support therefore investigated the records of past mining to better understand the old mine maps.Underground conditions observed in current Owl seam workings were also compared with the maps of the old C–seam workings.The study concluded that the presence of hazardous underlying remnants could not be ruled out.To mitigate the burst risk,D8 Cloverlick Mine adopted a strategy of stress probe drilling.A self-propelled coal drill was used to auger 11.5-m-long,small diameter holes in advance of mining.As each hole was drilled,the cuttings were measured to detect the presence of highly stressed coal.Ultimately the crossing was successfully completed without incident.展开更多
Intermittent characteristics of turbulence induced by coherent structures (blobs) was clearly observed in the ion saturation current signal, density fluctuation, particle flux and heat flux in HT-7. It is obvious th...Intermittent characteristics of turbulence induced by coherent structures (blobs) was clearly observed in the ion saturation current signal, density fluctuation, particle flux and heat flux in HT-7. It is obvious that ion saturation current signal has deviated from Gaussian distribution and the skewness (S) and flatness (K) of signal increase radially outwards in the scrape-off layer (SOL). Using conditional analysis (CA), asymmetric character of the intermittent bursts are demonstrated. Owing to the radial propagation of the coherent structures, the particle density profile in SOL is non-exponential and flat outwards from the last close flux surface (LCFS). It is found around LCFS that the large burst fluctuations (above 2.5 rms) are responsible for about 50% of the total particle transport. Burst events move radially outwards with Ee ~ B velocity, and the blob size can be calculated as 5r ~ V^rc. Our experiment shows that the blob size, life time and drift velocity experienced a pronounced decorrelation in the shear layer. The electrostatic Reynolds stress components become very strong and show a radially steep gradient in the proximity of the shear layer. These experimental findings may imply that the coherent structures are titled by the developed shear flow in the E × B shear layer.展开更多
We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of th...We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of the rotational axes between the outer part of a neutrino-cooled disk and a black hole result in precessions of the central black hole and the inner part of the disk. Hence, the jet arising from the neutrino annihilation above the inner disk is driven to precession. We find that the period of precession is positively correlated with the mass as well as the spin of a black hole.展开更多
A coal burst is defined as a rapid expulsion of coal(and potentially gas) from the boundary of the roadway. Rock and coal fractures together with micro seismic vibration is a common occurrence during mining, however, ...A coal burst is defined as a rapid expulsion of coal(and potentially gas) from the boundary of the roadway. Rock and coal fractures together with micro seismic vibration is a common occurrence during mining, however, it is very uncommon for coal and rock to be propelled into the roadway. Irrespective, such occurrences do occur and appear to require significantly more energy than is available from strain energy release during coal cutting. The sources of energy which can contribute to the propulsion of coal from the face or ribs are typically strain energy from the surrounding ground, seismic energy from a rapid rupture of the ground in the vicinity, or rapid expansion of gas from within the burst source area. The aim of this paper is to briefly review the bursts which may be related to strain energy, seismic energy and gas energy.展开更多
In order to study the rules of rock bursts caused by faults by means of mechanical analysis of a roof rock-mass balanced structure and numerical simulation about fault slip destabilization, the effect of coal mining o...In order to study the rules of rock bursts caused by faults by means of mechanical analysis of a roof rock-mass balanced structure and numerical simulation about fault slip destabilization, the effect of coal mining operation on fault plane stresses and slip displacement were studied. The results indicate that the slip displacement sharply increases due to the decrease of normal stress and the increase of shear stress at the fault plane when the working face advances from the footwall to the fault itself, which may induce a fault rock burst. However, this slip displacement will be very small due to the increase of normal stress and the decrease of shear stress when the working face advances from the hanging wall to the fault itself, which results in a very small risk of a fault rock burst.展开更多
Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves...Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.展开更多
In 2017,one of the international authorities on coal bursts,Mark Christopher,published a paper entitled"Coal bursts that occur during development:A rock mechanics enigma",in which several relevant technical ...In 2017,one of the international authorities on coal bursts,Mark Christopher,published a paper entitled"Coal bursts that occur during development:A rock mechanics enigma",in which several relevant technical issues were identified.This paper outlines what is considered to be a credible,first-principles,mechanistic explanation for these three current development coal burst conundrums by reference to early published coal testing work examining the significance of a lack of"constraint"to coal stability and an understanding of how very specific structural geology and other geological features can logically cause this to occur in situ,albeit on a statistically very rare basis.This basic model is examined by reference to published information pertaining to the development coal-burst that occurred at the Austar Coal Mine in New South Wales,Australia,in 2014 and from the Sunnyside District in Utah,the United States.The"cause and effect"model for development of coal bursts presented also offers a meaningful explanation for the statistical improbability for what are nonetheless potentially highly-destructive events,being able to explain the statistical rarity being just as important to the credibility of the model as explaining the local conditions associated with burst events.The model could also form the basis for a robust,riskbased approach utilising a"hierarchy of controls",to the operational management of the development coal burst threat.Specifically,the use of pre-mining predictions for likely burst-prone and non-burstprone areas,the use of the mine layout to avoid or at least minimise mining within burst-prone areas if appropriate,and finally the development of an operational Trigger Action Response Plan(TARP)that reduces the likelihood of inadvertent roadway development into a burst-prone area without suitable safety controls already being in place.展开更多
Two groups of microwave type U and Reverse-Slope(RS)bursts after the Soft X-Ray(SXR)maximum were observed with the 2.6~3.8GHz spectrometer of Chinese Solar Broadband Radio Spectrometers(SBRS/Huairou)on 15 February 201...Two groups of microwave type U and Reverse-Slope(RS)bursts after the Soft X-Ray(SXR)maximum were observed with the 2.6~3.8GHz spectrometer of Chinese Solar Broadband Radio Spectrometers(SBRS/Huairou)on 15 February 2011,when an X2.2 solar flare occurred in the Active Region(AR)NOAA 11158.A Shear-driven Quadrupolar Reconnection(SQR)model was utilized to analyze these bursts and the two loops involved were found to be basically in the same spatial scale and have a height difference of about 1300 km.These bursts were interpreted to be a result of a new reconnection process between the two similar-scaled loops.展开更多
56Cu is close to the waiting-point nucleus 56Ni and lies on the rapid proton capture(rp) process path in Type I X-ray bursts(XRBs). In this work, we obtained a revised thermonuclear reaction rate of 55Ni(p,γ)56...56Cu is close to the waiting-point nucleus 56Ni and lies on the rapid proton capture(rp) process path in Type I X-ray bursts(XRBs). In this work, we obtained a revised thermonuclear reaction rate of 55Ni(p,γ)56Cu in the temperature region relevant to XRBs. This rate was recalculated based on the recent experimental level structure in 56Cu, the recently measured proton separation energy of Sp = 579.8(7.1) keV, together with shell-model calculation, and the mirror nuclear structure in 56Co. The associated uncertainties in the rates were estimated by a Monte Carlo method. Our revised rate is significantly different from the recent results, which were partially based on experimental results; in addition, we found that a result in a previous work was incorrect. We recommend our revised rate to be incorporated in the future astrophysical network calculations.展开更多
POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polar...POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.展开更多
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion...Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.展开更多
Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of c...Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering.展开更多
The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocit...The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.展开更多
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
SVOM(Space-based multiband Variable Object Monitor)is a Chinese-French space mission mainly designed to study Gamma-Ray Bursts.The satellite carries four instruments to detect and localize the prompt GRB emission and ...SVOM(Space-based multiband Variable Object Monitor)is a Chinese-French space mission mainly designed to study Gamma-Ray Bursts.The satellite carries four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in soft X-rays,and a VHF communication system enables the fast transmission of SVOM alerts to the ground.The ground segment includes an array of wide-angle cameras and two follow-up telescopes.It was launched into an orbit of about 635 km on 22 June 2024,with three years of nominal operations and an extension of two years.展开更多
GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the con...GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.展开更多
文摘Coal bursts are typically associated with highly stressed coal.Most bursts occur during retreat mining(longwall mining or pillar recovery) in highly stressed locations like the tailgate corner of the longwall panel.Others are associated with multiple seam interactions.However, a small but significant percentage of coal bursts have occurred during development or in outby locations unaffected by active mining.Most development bursts have been relatively small, but some have been highly destructive.No theory of coal bursts can be complete if it does not account for this type of event.This paper focusses on the development mining coal burst experience in the US, putting it into the context of the entire US coal burst database.The first documented development coal burst occurred almost exactly 100 years ago during slope drivage at the Sunnyside Mine in Utah.Sunnyside subsequently had a long history of bursts, mainly during retreat mining but also during development.Several Colorado mines have also experienced multiple development bursts.Many, but by no means all, of the development bursts in these western US coalfields have been associated with known faults.In the Central Appalachian coalfields, most development bursts have occurred in multiple seam situations.In some of these cases, however, there was no retreat mining in either seam.The paper closes with some lessons from this history, with implications for preventing such events in the future.
基金the implementation of task 2 of the subject “The aspects of environment and the safety of conducting underground work” of the statutory research of IMG PAN in the year 2018
文摘Similar to coal, rock and gas ejections, rock mass tremors and rock bursts are among the most serious natural hazards accompanying the underground extraction of coal. Gas-dynamic phenomena caused by rock mass tremors and rock bursts observed as transient states of air parameters in mining headings,are usually generated as a result of a change in the geometry of headings and the release of considerable amounts of gases. Particular significance is attributed to transient states caused by disasters, which are often accompanied by rapid incidents, presenting threats to the life and health of the underground crew.In Polish mining there are known examples of transient states of air parameters recorded during gasdynamic phenomena, e.g. tremors and rock bursts. The paper presents the case studies of rapid seismic incidents to show how records in mine monitoring systems broaden the knowledge about the transient states of air parameters in mining headings generated because of them.
文摘In order to reach a large,untapped reserve of high-quality coal,D8 Cloverlick Mine proposed to mine a corridor nearly 600 m deep beneath the Benham Spur of Black Mountain,Kentucky’s highest peak.D8 Cloverlick Mine was extracting the Owl seam,but the corridor’s route lay approximately 20 m above century-old mine workings in the C–(Darby)seam.Adding to the concern,three serious coal bursts had recently occurred in nearby Owl seam workings.Maps of the old workings seemed to indicate that the underlying C–seam had been fully extracted.However,two of the coal bursts had occurred above areas where the C–Seam was also shown as mined out.Mine Safety and Health Administration(MSHA)Technical Support therefore investigated the records of past mining to better understand the old mine maps.Underground conditions observed in current Owl seam workings were also compared with the maps of the old C–seam workings.The study concluded that the presence of hazardous underlying remnants could not be ruled out.To mitigate the burst risk,D8 Cloverlick Mine adopted a strategy of stress probe drilling.A self-propelled coal drill was used to auger 11.5-m-long,small diameter holes in advance of mining.As each hole was drilled,the cuttings were measured to detect the presence of highly stressed coal.Ultimately the crossing was successfully completed without incident.
基金supported by National Natural Science Foundation of China (Nos.10605028, 10675127, 10675126 and 10675124)
文摘Intermittent characteristics of turbulence induced by coherent structures (blobs) was clearly observed in the ion saturation current signal, density fluctuation, particle flux and heat flux in HT-7. It is obvious that ion saturation current signal has deviated from Gaussian distribution and the skewness (S) and flatness (K) of signal increase radially outwards in the scrape-off layer (SOL). Using conditional analysis (CA), asymmetric character of the intermittent bursts are demonstrated. Owing to the radial propagation of the coherent structures, the particle density profile in SOL is non-exponential and flat outwards from the last close flux surface (LCFS). It is found around LCFS that the large burst fluctuations (above 2.5 rms) are responsible for about 50% of the total particle transport. Burst events move radially outwards with Ee ~ B velocity, and the blob size can be calculated as 5r ~ V^rc. Our experiment shows that the blob size, life time and drift velocity experienced a pronounced decorrelation in the shear layer. The electrostatic Reynolds stress components become very strong and show a radially steep gradient in the proximity of the shear layer. These experimental findings may imply that the coherent structures are titled by the developed shear flow in the E × B shear layer.
基金Project supported by the National Basic Research Program of China (Grant No. 2009CB824800)the National Natural Science Foundation of China (Grant Nos. 10833002,11003016,11073015,and 11103015)the Natural Science Foundation of Fujian Province,China (Grant No. 2010J01017)
文摘We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of the rotational axes between the outer part of a neutrino-cooled disk and a black hole result in precessions of the central black hole and the inner part of the disk. Hence, the jet arising from the neutrino annihilation above the inner disk is driven to precession. We find that the period of precession is positively correlated with the mass as well as the spin of a black hole.
基金part of a larger work program currently being undertaken on behalf of ACARP (Australian Coal Association Research Program) Projects C26066 and C26060
文摘A coal burst is defined as a rapid expulsion of coal(and potentially gas) from the boundary of the roadway. Rock and coal fractures together with micro seismic vibration is a common occurrence during mining, however, it is very uncommon for coal and rock to be propelled into the roadway. Irrespective, such occurrences do occur and appear to require significantly more energy than is available from strain energy release during coal cutting. The sources of energy which can contribute to the propulsion of coal from the face or ribs are typically strain energy from the surrounding ground, seismic energy from a rapid rupture of the ground in the vicinity, or rapid expansion of gas from within the burst source area. The aim of this paper is to briefly review the bursts which may be related to strain energy, seismic energy and gas energy.
基金Projects 50490273 and 50474068 supported by the National Natural Science Foundation of China2006BAK04B02 and 2006BAK03B06 by the Support Programs of the National Science and Technique During the 11th Five-Year Period2005CB221504 by the State Basic Research Program of China
文摘In order to study the rules of rock bursts caused by faults by means of mechanical analysis of a roof rock-mass balanced structure and numerical simulation about fault slip destabilization, the effect of coal mining operation on fault plane stresses and slip displacement were studied. The results indicate that the slip displacement sharply increases due to the decrease of normal stress and the increase of shear stress at the fault plane when the working face advances from the footwall to the fault itself, which may induce a fault rock burst. However, this slip displacement will be very small due to the increase of normal stress and the decrease of shear stress when the working face advances from the hanging wall to the fault itself, which results in a very small risk of a fault rock burst.
基金the National Basic Research Program of China (Nos.2005 CB221504 and 2010CB226805)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT (No.09KF08)the Foundation of the Henan Educational Committee (No.2010 A440003)
文摘Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.
文摘In 2017,one of the international authorities on coal bursts,Mark Christopher,published a paper entitled"Coal bursts that occur during development:A rock mechanics enigma",in which several relevant technical issues were identified.This paper outlines what is considered to be a credible,first-principles,mechanistic explanation for these three current development coal burst conundrums by reference to early published coal testing work examining the significance of a lack of"constraint"to coal stability and an understanding of how very specific structural geology and other geological features can logically cause this to occur in situ,albeit on a statistically very rare basis.This basic model is examined by reference to published information pertaining to the development coal-burst that occurred at the Austar Coal Mine in New South Wales,Australia,in 2014 and from the Sunnyside District in Utah,the United States.The"cause and effect"model for development of coal bursts presented also offers a meaningful explanation for the statistical improbability for what are nonetheless potentially highly-destructive events,being able to explain the statistical rarity being just as important to the credibility of the model as explaining the local conditions associated with burst events.The model could also form the basis for a robust,riskbased approach utilising a"hierarchy of controls",to the operational management of the development coal burst threat.Specifically,the use of pre-mining predictions for likely burst-prone and non-burstprone areas,the use of the mine layout to avoid or at least minimise mining within burst-prone areas if appropriate,and finally the development of an operational Trigger Action Response Plan(TARP)that reduces the likelihood of inadvertent roadway development into a burst-prone area without suitable safety controls already being in place.
基金Supported by National Basic Research Program of Ministry of Science and Technology of China(2011CB811401)the National Major Scientific Equipment Research and Development Project(ZDYZ2009-3)National Natural Science Foundation of China(11211120147,11221063,11273030,11103044,11103039,11373039)
文摘Two groups of microwave type U and Reverse-Slope(RS)bursts after the Soft X-Ray(SXR)maximum were observed with the 2.6~3.8GHz spectrometer of Chinese Solar Broadband Radio Spectrometers(SBRS/Huairou)on 15 February 2011,when an X2.2 solar flare occurred in the Active Region(AR)NOAA 11158.A Shear-driven Quadrupolar Reconnection(SQR)model was utilized to analyze these bursts and the two loops involved were found to be basically in the same spatial scale and have a height difference of about 1300 km.These bursts were interpreted to be a result of a new reconnection process between the two similar-scaled loops.
基金supported by the National Natural Science Foundation of China(Nos.11825504,11490562,and 11675229)the Major State Basic Research Development Program of China(No.2016YFA0400503)
文摘56Cu is close to the waiting-point nucleus 56Ni and lies on the rapid proton capture(rp) process path in Type I X-ray bursts(XRBs). In this work, we obtained a revised thermonuclear reaction rate of 55Ni(p,γ)56Cu in the temperature region relevant to XRBs. This rate was recalculated based on the recent experimental level structure in 56Cu, the recently measured proton separation energy of Sp = 579.8(7.1) keV, together with shell-model calculation, and the mirror nuclear structure in 56Co. The associated uncertainties in the rates were estimated by a Monte Carlo method. Our revised rate is significantly different from the recent results, which were partially based on experimental results; in addition, we found that a result in a previous work was incorrect. We recommend our revised rate to be incorporated in the future astrophysical network calculations.
基金supported by Department of Physics and GXUNAOC Center for Astrophysics and Space Sciences,Guangxi UniversityThe National Natural Science Foundation of China(Nos.12027803,U1731239,12133003,12175241,U1938201,U1732266)the Guangxi Science Foundation(Nos.2018GXNSFGA281007,2018JJA110048).
文摘POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.
文摘Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.
基金financial support for this work provided by the National Natural Science Foundation of China(Nos.52274147,52374101,and 32111530138)the Jiangsu Province Basic Research Special Fund-Soft Science Research(No.BZ2024024)the State Key Research Development Program of China(No.2022YFC3004603).
文摘Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12202309,1233000165,12172242,and 12272265)Science and Technology Program of Gansu Province of China(Grant No.22JR5RA304)Tianjin Research Innovation for Postgraduate Students(Grant No.22KJ049)。
文摘The experimental research on zero-net-mass-flux jet closed-loop active control was conducted in the wind tunnel.The mu-level method successfully detected burst events of the coherent structures. The streamwise velocity signals in the turbulent boundary layer were measured by HWA. The drag reduction rate of 16.7% is obtained comparable to that of the open-loop control and saves 75% of the input energy at the asynchronous 100 V/160 Hz control case, which reflects the advantages of the closed-loop control. The experimental findings indicate that the intensity increases in the near-wall region.The perturbation of the PZT vibrators on the skewness factor is concentrated in the region y+< 60. The generation of highspeed fluids is depressed and the downward effect of high-speed fluids weakens. The alteration of energy distribution and the discernible impact of modulation between structures of varying scales are observed. The correlation coefficient exhibits a strong positive correlation, which indicates that the large-scale structures produce modulation effect on small-scale ones.The occurrence of burst events is effectively suppressed. The disturbance has the characteristics of stable periodicity,positive and negative symmetry, low intermittency, and high pulsation strength. The conditional phase waveform shows that the fluctuation amplitude increases, indicating amplitude modulation effects on coherent structures.
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
基金Supported by the Civil Science Satellite Engineering Project of State Administration of ScienceTechnology and Industry for National Defence。
文摘SVOM(Space-based multiband Variable Object Monitor)is a Chinese-French space mission mainly designed to study Gamma-Ray Bursts.The satellite carries four instruments to detect and localize the prompt GRB emission and measure the evolution of the afterglow in the visible band and in soft X-rays,and a VHF communication system enables the fast transmission of SVOM alerts to the ground.The ground segment includes an array of wide-angle cameras and two follow-up telescopes.It was launched into an orbit of about 635 km on 22 June 2024,with three years of nominal operations and an extension of two years.
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘GHz burst-mode femtosecond(fs)laser,which emits a series of pulse trains with extremely short intervals of several hundred picoseconds,provides distinct characteristics in materials processing as compared with the conventional irradiation scheme of fs laser(single-pulse mode).In this paper,we take advantage of the moderate pulse interval of 205 ps(4.88 GHz)in the burst pulse for high-quality and high-efficiency micromachining of single crystalline sapphire by laser induced plasma assisted ablation(LIPAA).Specifically,the preceding pulses in the burst generate plasma by ablation of copper placed behind the sapphire substrate,which interacts with the subsequent pulses to induce ablation at the rear surface of sapphire substrates.As a result,not only the ablation quality but also the ablation efficiency and the fabrication resolution are greatly improved compared to the other schemes including single-pulse mode fs laser direct ablation,single-pulse mode fs-LIPAA,and nanosecond-LIPAA.