With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
近年来,先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage,AA-CAES)得到了学术界及工业界的广泛关注,并可与制冷和制热系统耦合,以同时输出电力、冷量以及热量。然而,该系统需要额外的制冷和制热设备,系统复杂...近年来,先进绝热压缩空气储能(Advanced adiabatic compressed air energy storage,AA-CAES)得到了学术界及工业界的广泛关注,并可与制冷和制热系统耦合,以同时输出电力、冷量以及热量。然而,该系统需要额外的制冷和制热设备,系统复杂且成本较高。对此,文章提出了基于AA-CAES,通过控制透平出口温度和压力,得到冷空气以直接进行供冷,同时利用多余的储热水以间接进行生活热水供应,从而实现系统的冷热电联供。为了分析冷热电联供系统性能,文章建立了相应的热力模型,并在给定工况下计算了系统参数。结果表明,相比AA-CAES发电系统,AA-CAES冷热电联供系统总发电量减少了28.57 MWh,但得到了31.64 MWh的总供冷量和65.50 MWh的总供热量,系统能源利用率(Energy efficiency ratio,EER)提升至70.31%,实现了系统能源利用率的进一步提高。此外,系统关键参数的分析表明,压缩机出口温度和储气库最低压力对系统影响程度更大,随着压缩机出口温度的增大,EER从24.41%增大至75.25%,变化曲线逐渐由陡变缓;而储气库最低压力每升高1 MPa,EER增大2.37%。展开更多
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.