This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri...This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.展开更多
To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with...To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with varying gangue thicknesses and positions.The response patterns of compressive strength,elastic modulus,pre-peak accumulated energy,elastic energy index,and impact energy index were systematically analyzed.Furthermore,a new index for evaluating the impact tendency of gangue-containing coal was proposed,and its effectiveness was verified.The findings are as follows:(1)As the gangue thickness increases,both the compressive strength and the pre-peak energy of the combined structure decrease,whereas the elastic modulus increases accordingly.When the gangue is located in the lower middle position,the combined structure exhibits the lowest compressive strength and elastic modulus but the highest pre peak energy.(2)As the gangue shifts toward the middle position of the combined structure,the failure mode gradually transitions from comple te“crushing”failure to an incomplete“point-type”failure.As gangue thickness further increases,the failure region evolves from overall failure to localized failure,with the degree of failure shifting from complete to incomplete.The K_(crc)value corresponding to“crushing”complete failure is higher and has a stronger impact tendency compared to“point-type”incomplete failure.(3)The proposed comprehensive impact instability evaluation index K_(crc)for the gangue-coal combined structure has shown a significant positive correlation with compressive strength(R_(c))and impact energy index(K_(E)),further verifyi ng its rationality in comprehensively assessing the impact tendency of gangue-containing coal bodies.Applying this index to the evaluation of gangue-containing coal seams provides a more accurate reflection of their impact tendency compared with the residual energy index,which has a wide range of potential applications and practical significance.展开更多
Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was es...Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge mod...In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.展开更多
In order to evaluate objectively and accurately the integrity, safety and operating conditions in real time for the Nanjing Yangtze River Bridge, a large structural safety monitoring system was described. The monitori...In order to evaluate objectively and accurately the integrity, safety and operating conditions in real time for the Nanjing Yangtze River Bridge, a large structural safety monitoring system was described. The monitoring system is composed of three parts: sensor system, signal sampling and processing system, and safety monitoring and assessment system. Combining theoretical analysis with measured data analysis, main monitoring contents and layout of measuring points were determined. The vibration response monitoring was significantly investigated. The main contents of safety monitoring on vibration response monitoring are vibration of the main body of the Nanjing Yangtze river bridge, collision avoidance of the bridge piers, vibration of girders on high piers for the bridge approach and earthquake. As a field laboratory, the safety monitorying system also provides information to investigate the unknown and indeterminate problems on bridge structures and specific environment around bridges.展开更多
To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural ...To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.展开更多
A two-dimensional cyanide-bridged Cu(Ⅱ)-Pt(Ⅱ) bimetallic complex has been synthesized by solution diffusion method using [Pt (CN)4]2- and [Cu (L)]2+ (L =3,10-diethanol-1,3,5,8,10,12-hexaazacyclotetradecane) as build...A two-dimensional cyanide-bridged Cu(Ⅱ)-Pt(Ⅱ) bimetallic complex has been synthesized by solution diffusion method using [Pt (CN)4]2- and [Cu (L)]2+ (L =3,10-diethanol-1,3,5,8,10,12-hexaazacyclotetradecane) as building blocks. Unexpectedly, the obtained complex Cu(DMF)2[Pt(CN)4] (1) is an analogue of the well-known Hofmann -type clathrate without macrocyclic ligand. Single-crystal X-ray diffraction reveals that 1 crystallizes in monoclinic, space group C2/m, a=1.624 8(6) nm, b=0.739 3(3) nm, c=0.695 5(3) nm, β=108.969(4)°. The crystal structure of 1 consists of two-dimensional corrugated metal cyanide sheets without interpenetration stacking along the a axis in an ABAB packing mode.展开更多
以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵...以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵向位移的时空特性与实际桥梁结构相符合,验证了PS-InSAR技术观测桥梁结构位移的可行性.建立支座纵向位移与温度的线性相关模型,并与结构健康监测系统的实测结果进行对比.两者吻合良好,相对误差控制在10%以内,验证了PS-InSAR测量桥梁结构位移的可靠性.利用有限元模拟温度作用下桥梁支座的位移变化,并与PS-InSAR位移时间序列进行对比.两者趋势基本一致,LOS向位移误差在[-10,10]mm,验证了PS-InSAR测量桥梁结构位移的准确性.展开更多
Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it ...Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil展开更多
The searching method of failure surface which consists of complex geological structures in high and steep rock slopes was studied. Based on computer simulation technology and Monte-Carlo method, three dimensional mult...The searching method of failure surface which consists of complex geological structures in high and steep rock slopes was studied. Based on computer simulation technology and Monte-Carlo method, three dimensional multi-scale geological structures such as engineering scale and statistical scale structures of the slope were simulated. The searching method of failure route which consists of joints and rock bridges was determined via simulation annealing method by considering the shear strength of joints or rock bridges in one supposed route. When shear strengths of all the supposed routes were computed, the least shear strength route was considered failure route. Then, the inclined slice of joint slices and rock bridge slices were separated according to the position of joints and rock bridges. For the rock bridge slices, by distinguishing the failure model, the force direction to the next slice was defined. Finally, the limit equilibrium equations for every slice were established, and the slope stability factor was obtained. One practical example indicates that the discussed method is more closely to the real condition.展开更多
基金the National Natural Science Foundation of China(Grant Nos.52371342,52271338,52101378 and 51979277)。
文摘This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.
基金Project(52274130)supported by the National Natural Science Foundation of ChinaProject(ZR2024ZD22)supported by the Major Basic Research Project of the Shandong Provincial Natural Science Foundation,China+1 种基金Project(2023375)supported by the Guizhou University Research and Innovation Team,ChinaProject(LH[2024]-026)supported by the Guizhou Science and Technology Plan Project,China。
文摘To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with varying gangue thicknesses and positions.The response patterns of compressive strength,elastic modulus,pre-peak accumulated energy,elastic energy index,and impact energy index were systematically analyzed.Furthermore,a new index for evaluating the impact tendency of gangue-containing coal was proposed,and its effectiveness was verified.The findings are as follows:(1)As the gangue thickness increases,both the compressive strength and the pre-peak energy of the combined structure decrease,whereas the elastic modulus increases accordingly.When the gangue is located in the lower middle position,the combined structure exhibits the lowest compressive strength and elastic modulus but the highest pre peak energy.(2)As the gangue shifts toward the middle position of the combined structure,the failure mode gradually transitions from comple te“crushing”failure to an incomplete“point-type”failure.As gangue thickness further increases,the failure region evolves from overall failure to localized failure,with the degree of failure shifting from complete to incomplete.The K_(crc)value corresponding to“crushing”complete failure is higher and has a stronger impact tendency compared to“point-type”incomplete failure.(3)The proposed comprehensive impact instability evaluation index K_(crc)for the gangue-coal combined structure has shown a significant positive correlation with compressive strength(R_(c))and impact energy index(K_(E)),further verifyi ng its rationality in comprehensively assessing the impact tendency of gangue-containing coal bodies.Applying this index to the evaluation of gangue-containing coal seams provides a more accurate reflection of their impact tendency compared with the residual energy index,which has a wide range of potential applications and practical significance.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Railway of ChinaProject(2006FJ4233) supported by Hunan Postdoctoral Scientific Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University,China
文摘Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.
基金Project(U1534210)supported by the National Natural Science Foundation of ChinaProject(14JJ1003)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2015CX003)supported by the Project of Innovation-driven Plan in Central South University,ChinaProject(14JC1003)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2015T002-A)supported by the Technological Research and Development program of China Railways Cooperation
文摘In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.
文摘In order to evaluate objectively and accurately the integrity, safety and operating conditions in real time for the Nanjing Yangtze River Bridge, a large structural safety monitoring system was described. The monitoring system is composed of three parts: sensor system, signal sampling and processing system, and safety monitoring and assessment system. Combining theoretical analysis with measured data analysis, main monitoring contents and layout of measuring points were determined. The vibration response monitoring was significantly investigated. The main contents of safety monitoring on vibration response monitoring are vibration of the main body of the Nanjing Yangtze river bridge, collision avoidance of the bridge piers, vibration of girders on high piers for the bridge approach and earthquake. As a field laboratory, the safety monitorying system also provides information to investigate the unknown and indeterminate problems on bridge structures and specific environment around bridges.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Rail way of Chinaproject(2005) supported by the Postdoctoral Foundation of Central South University
文摘To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.
文摘A two-dimensional cyanide-bridged Cu(Ⅱ)-Pt(Ⅱ) bimetallic complex has been synthesized by solution diffusion method using [Pt (CN)4]2- and [Cu (L)]2+ (L =3,10-diethanol-1,3,5,8,10,12-hexaazacyclotetradecane) as building blocks. Unexpectedly, the obtained complex Cu(DMF)2[Pt(CN)4] (1) is an analogue of the well-known Hofmann -type clathrate without macrocyclic ligand. Single-crystal X-ray diffraction reveals that 1 crystallizes in monoclinic, space group C2/m, a=1.624 8(6) nm, b=0.739 3(3) nm, c=0.695 5(3) nm, β=108.969(4)°. The crystal structure of 1 consists of two-dimensional corrugated metal cyanide sheets without interpenetration stacking along the a axis in an ABAB packing mode.
文摘以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵向位移的时空特性与实际桥梁结构相符合,验证了PS-InSAR技术观测桥梁结构位移的可行性.建立支座纵向位移与温度的线性相关模型,并与结构健康监测系统的实测结果进行对比.两者吻合良好,相对误差控制在10%以内,验证了PS-InSAR测量桥梁结构位移的可靠性.利用有限元模拟温度作用下桥梁支座的位移变化,并与PS-InSAR位移时间序列进行对比.两者趋势基本一致,LOS向位移误差在[-10,10]mm,验证了PS-InSAR测量桥梁结构位移的准确性.
文摘针对现有基于数据驱动的随机子空间(data-driven stochastic subspace identification,DATA-SSI)算法存在的不足,无法实现稳定图中真假模态的智能化筛选,提出了一种新的模态参数智能化识别算法。首先通过引入滑窗技术来实现对输入信号的合理划分,以避免虚假模态和模态遗漏现象的出现;其次通过引入OPTICS(ordering points to identify the clustering structure)密度聚类算法实现稳定图中真实模态的智能化筛选,最后将所提算法运用于某实际大型斜拉桥主梁结构的频率和模态振型识别过程中。结果表明,所提改进算法识别的频率值结果与理论值(MIDAS有限元结果)以及实际值(现场动力特性实测结果)间的误差均在5%以内,且识别的模态振型图与理论模态振型图具有很高的相似性。
基金Foundation item: Project(2013CB036405) supported by the National Basic Research Program of China Project(KZZD-EW-05) supported by the Key Research Program of the Chinese Academy of Sciences
文摘Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil
基金Project(50539100) supported by the National Natural Science Foundation of ChinaProject(BK2006171) supported by the Jiangsu Natural Science Foundation
文摘The searching method of failure surface which consists of complex geological structures in high and steep rock slopes was studied. Based on computer simulation technology and Monte-Carlo method, three dimensional multi-scale geological structures such as engineering scale and statistical scale structures of the slope were simulated. The searching method of failure route which consists of joints and rock bridges was determined via simulation annealing method by considering the shear strength of joints or rock bridges in one supposed route. When shear strengths of all the supposed routes were computed, the least shear strength route was considered failure route. Then, the inclined slice of joint slices and rock bridge slices were separated according to the position of joints and rock bridges. For the rock bridge slices, by distinguishing the failure model, the force direction to the next slice was defined. Finally, the limit equilibrium equations for every slice were established, and the slope stability factor was obtained. One practical example indicates that the discussed method is more closely to the real condition.