Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issue...Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.展开更多
The HB-red flower trait came from the filial generation of the interspecific cross of upland cotton(Gossypium hirsutum L.) and G.bickii.It exhibits pink petals and filaments,with a large
Cotton is the prime natural fiber with economic significance globally.Cotton farming and breeding have a long his-tory in Pakistan.The development of high yielding upland cotton(Gossypium hirsutum)varieties gradually ...Cotton is the prime natural fiber with economic significance globally.Cotton farming and breeding have a long his-tory in Pakistan.The development of high yielding upland cotton(Gossypium hirsutum)varieties gradually replaced the cultivation of diploid Gossypium species.Climate change along with emergence of new epidemic diseases caused yield loss in recent years.The biotic stress considerably reduced the performance and yield potential of cotton.Suit-able breeding strategies are essential to generate useful genetic variations and to identify desired traits.Conventional breeding has remarkably increased cotton yield and fiber quality,which has cultivated the NIAB-78,S-12,MNH‐786,and FH‐Lalazar like cultivars.However,this phenotypic selection based breeding method has low efficiency to pro-duce stress resilient cotton.The efficiency of traditional breeding has significantly improved by the marker assisted selection technology.Breakthroughs in molecular genetics,bioinformatics analysis,genetic engineering,and genome sequencing have opened new technique routes for cotton breeding.In addition,genetic improvement through quantitative trait loci,transcriptome,and CRISPR/Cas9 mediated genomic editing can provide suitable platform to improve the resistance to stresses induced by bollworms,cotton leaf curl virus,heat,drought,and salt.The approval of transgenic lines harboring triple gene Cry1Ac+Cry2A+GTG are critical for cotton crop.This review has critically discussed the progress and limitations of cotton breeding in Pakistan,and reviewed the utilization of novel genetic variations and selection tools for sustainable cotton production.展开更多
Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence...Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence of these compounds limits their usage as food and feed.To obtain a glandless cotton variety with high-frequency somatic embryo production ability,27 glandless varieties展开更多
Mutations are possibly the only source ofcreating heritable variability in all biologicalsystem and,many useful mutants in plants havebeen released for commercial cultivation acrossthe world.To-date throughout the wor...Mutations are possibly the only source ofcreating heritable variability in all biologicalsystem and,many useful mutants in plants havebeen released for commercial cultivation acrossthe world.To-date throughout the world about2252 mutants have been officially registered inthe FAO/IAEA mutant varieties data展开更多
A wheat breeding model for high yield in the middle and south of Hebei Province was developed. Wheat variety Ji 84-5418 has been bred on this model. The analysis results of high-yield and stability indicated that Ji 8...A wheat breeding model for high yield in the middle and south of Hebei Province was developed. Wheat variety Ji 84-5418 has been bred on this model. The analysis results of high-yield and stability indicated that Ji 84-5418 was not only an aggregate of varied excellent characters,but a recombined biotype which could early differentiate spike and develop coordi-nately,and had better self-regulation ability and potential high productivity. Its yield is stable at 6000-8250 kg/ha.展开更多
Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software...Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.展开更多
Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection w...Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection was conducted first to keep those with improved fibre quality,and followed for high yields,a large proportion in the resultant populations was the same between selections based on Cottonspec predicted yarn quality and HVI-measured fibre properties.They both exceeded the selection based on FQI and Background The approach of directly testing yarn quality to define fibre quality breeding objectives and progress the selection is attractive but difficult when considering the need for time and labour.The question remains whether yarn prediction tools from textile research can serve as an alternative.In this study,using a dataset from three seasons of field testing recombinant inbred line population,Cottonspec,a software developed by the Commonwealth Scientific and Industrial Research Organisation(CSIRO)for predicting ring spun yarn quality from fibre properties measured by High Volume Instrument(HVI),was used to select improved fibre quality and lint yield in the population.The population was derived from an advanced generation inter-crossing of four CSIRO conventional commercial varieties.The Cottonspec program was able to provide an integrated index of the fibre qualities affecting yarn properties.That was compared with selection based on HVI-measured fibre properties,and two composite fibre quality variables,namely,fibre quality index(FQI),and premium and discount(PD)points.The latter represents the net points of fibre length,strength,and micronaire based on the Premiums and Discounts Schedule used in the market while modified by the inclusion of elongation.PD points.Conclusions The population contained elite segregants with improved yield and fibre properties,and Cottonspec predicted yarn quality is useful to effectively capture these elites.There is a need to further develop yarn quality prediction tools through collaborative efforts with textile mills,to draw better connectedness between fibre and yarn quality.This connection will support the entire cotton value chain research and evolution.展开更多
Mutagenic breeding has been carried out in China since 1986 by on boarding the crop seeds in recoverable satellite and balloon. Good results have been obtained. Some new crop lines with high-yield, good-quantity, dise...Mutagenic breeding has been carried out in China since 1986 by on boarding the crop seeds in recoverable satellite and balloon. Good results have been obtained. Some new crop lines with high-yield, good-quantity, disease resistant characters were obtained respectively.展开更多
The narrow genetic base in potato (Solanum tuberosum L.) limits the progress in cultivar development.The rich diploid germplasm in the origin center of potato provide a unique resource for improvement of tetraploid po...The narrow genetic base in potato (Solanum tuberosum L.) limits the progress in cultivar development.The rich diploid germplasm in the origin center of potato provide a unique resource for improvement of tetraploid potatoes.Seven newly developed diploid hybrids with 2n pollen production,all of which have S. phureja background,were developed and evaluated for their value in potato breeding.They were crossed as male parnets to six tetraploid Solanum tuberosum cultivars,and seeds in large quantity from eleven crosses were obtained.Main agronomic traits,such as tuber yield,tuber number,mean tuber weight,tuber shape,eye depth,skin smoothness,flesh color,and specific gravity,were measured for 4x 2x tetraploid progenies in seedling generation,and their parents as well.All of the diploid hybrids had some merit for specific traits and the DH39 was more promising;high specific gravity trait in some diploid hybrids was successfully introgressed into tetroploid progenies via 4x 2x crosses.These diploid hybrids have potential value in potato breeding.展开更多
The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resist...The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resistance in the F 1 varied with the synthetic wheat accessions used as crossing parents.In the F 4,some resistant head lines were generated from the crosses,although their parents had different scab resistance levels.It indicated that synthetic hexaploid wheat are useful in wheat breeding for scab resistance.展开更多
Both Fusarium and Verticillium wilts are important soil-borne diseases,which can not be effectively controlled by chemical fungicides.The two diseases,especially Verticillium wilt,have
Informative,portable,and efficient DNA markers have the potential to accelerate genetic gain in cotton breeding.Discovery and widespread application of DNA markers to cotton has
The sea cucumber is a highly esteemed source of nourishment,recognized as one of the“Eight Treasures of the Sea.”The bioactive compounds derived from sea cucumbers exhibit diverse physiological activities,including ...The sea cucumber is a highly esteemed source of nourishment,recognized as one of the“Eight Treasures of the Sea.”The bioactive compounds derived from sea cucumbers exhibit diverse physiological activities,including anti-tumor,antioxidant,anti-coagulation,anti-viral,anti-fatigue,immune enhancement,cognitive improvement,and metabolic regulation.Notably,within the skincare sector,these compounds demonstrate significant anti-aging,moisturizing,whitening,wrinkle reduction,repair and inhibition of melanin production properties.This article assesses the current state of sea cucumber aquaculture in China and the utilization of its bioactive ingredients in skincare formulations.The objective is to furnish additional raw materials and semi-finished products for China’s skincare and pharmaceutical industries,to advance the integration of sea cucumber bioactive components within these sectors,and to invigorate the rapid development of the tropical sea cucumber breeding industry.展开更多
Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with ...Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.展开更多
In recent years,the quality of people's lives has gradually improved,and people pay more attention to the rationality of food nutrition.Green and healthy aquatic products,as representative of high-protein and low-...In recent years,the quality of people's lives has gradually improved,and people pay more attention to the rationality of food nutrition.Green and healthy aquatic products,as representative of high-protein and low-fat foods,are increasingly sought after by people.Triploid rainbow trout(Oncorhynchus mykiss)is rich in multiple unsaturated fatty acids and trace elements,which have rich nutrition and delicate flesh,its market demand is increasing.Triploid rainbow trout aquaculture has gradually become a characteristic economic industry in China.The triploid rainbow trout is favored by farmers because of its fast growth rate,delicious meat and large population.However,the development of triploid rainbow trout aquaculture is also restricted by many problems,such as unreasonable breeding management,high feed cost and low processing efficiency.Based on the research reports of domestic and foreign experts and scholars,this paper summarized the research progress of triploid rainbow trout,analyzed the influence of different farming models,nutritional needs,disease prevention on the triploid rainbow trout industry,and put forward suggestions for the development of triploid rainbow trout industry in order to provide scientific reference for the further development of triploid rainbow trout farming technology in China.展开更多
Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threaten...Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threatened by the unpre-dictable changes in climate,specifically high temperatures.Breeding heat-tolerant,high-yielding cotton cultivars with wide adaptability to be grown in the regions with rising temperatures is one of the primary objectives of modern cotton breeding programmes.Therefore,the main objective of the current study is to figure out the effective breed-ing approach to imparting heat tolerance as well as the judicious utilization of commercially significant and stress-tolerant attributes in cotton breeding.Initially,the two most notable heat-susceptible(FH-115 and NIAB Kiran)and tolerant(IUB-13 and GH-Mubarak)cotton cultivars were spotted to develop filial and backcross populations to accom-plish the preceding study objectives.The heat tolerant cultivars were screened on the basis of various morphological(seed cotton yield per plant,ginning turnout percentage),physiological(pollen viability,cell membrane thermostabil-ity)and biochemical(peroxidase activity,proline content,hydrogen peroxide content)parameters.Results The results clearly exhibited that heat stress consequently had a detrimental impact on every studied plant trait,as revealed by the ability of crossing and their backcross populations to tolerate high temperatures.However,when considering overall yield,biochemical,and physiological traits,the IUB-13×FH-115 cross went over particularly well at both normal and high temperature conditions.Moreover,overall seed cotton yield per plant exhibited a posi-tive correlation with both pollen viability and antioxidant levels(POD activity and proline content).Conclusions Selection from segregation population and criteria involving pollen viability and antioxidant levels concluded to be an effective strategy for the screening of heat-tolerant cotton germplasms.Therefore,understanding acquired from this study can assist breeders identifying traits that should be prioritized in order to develop climate resilient cotton cultivars.展开更多
Heat waves,and an increased number of warm days and nights,have become more prevalent in major agricultural regions of the world.Although well adapted to semi-arid regions,cotton is vulnerable to high temperatures,par...Heat waves,and an increased number of warm days and nights,have become more prevalent in major agricultural regions of the world.Although well adapted to semi-arid regions,cotton is vulnerable to high temperatures,particularly during flowering and boll development.To maintain lint yield potential without compromising its quality under high-temperature stress,it is essential to understand the effects of heat stress on various stages of plant growth and development,and associated tolerance mechanisms.Despite ongoing efforts to gather data on the effects of heat stress on cotton growth and development,there remains a critical gap in understanding the distinct influence of high temperatures during the day and night on cotton yield and quality.Also,identifying mechanisms and target traits that induce greater high day and night temperature tolerance is essential for breeding climate-resilient cotton for future uncertain climates.To bridge these knowledge gaps,we embarked on a rigorous and comprehensive review of published literature,delving into the impact of heat stress on cotton yields and the consequential losses in fiber quality.This review encompasses information on the effects of heat stress on growth,physiological,and biochemical responses,fertilization,cotton yield,and quality.Additionally,we discuss management options for minimizing heat stress-induced damage,and the benefits of integrating conventional and genomics-assisted breeding for developing heat-tolerant cotton cultivars.Finally,future research areas that need to be addressed to develop heat-resilient cotton are proposed.Keywords Controlled environment, Cotton, Fiber yield and quality, Heat stress, Heat tents, Reproductive failure 。展开更多
基金the Research Project at International Center for Chemical and Biological Sciences,University of Karachi,Karachi,Pakistan。
文摘Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.
文摘The HB-red flower trait came from the filial generation of the interspecific cross of upland cotton(Gossypium hirsutum L.) and G.bickii.It exhibits pink petals and filaments,with a large
基金This work was sponsored by funds from the Zhongyuan Academician Founda-tion(212101510001)the General Program of the National Natural Science Foundation of China(31871679).
文摘Cotton is the prime natural fiber with economic significance globally.Cotton farming and breeding have a long his-tory in Pakistan.The development of high yielding upland cotton(Gossypium hirsutum)varieties gradually replaced the cultivation of diploid Gossypium species.Climate change along with emergence of new epidemic diseases caused yield loss in recent years.The biotic stress considerably reduced the performance and yield potential of cotton.Suit-able breeding strategies are essential to generate useful genetic variations and to identify desired traits.Conventional breeding has remarkably increased cotton yield and fiber quality,which has cultivated the NIAB-78,S-12,MNH‐786,and FH‐Lalazar like cultivars.However,this phenotypic selection based breeding method has low efficiency to pro-duce stress resilient cotton.The efficiency of traditional breeding has significantly improved by the marker assisted selection technology.Breakthroughs in molecular genetics,bioinformatics analysis,genetic engineering,and genome sequencing have opened new technique routes for cotton breeding.In addition,genetic improvement through quantitative trait loci,transcriptome,and CRISPR/Cas9 mediated genomic editing can provide suitable platform to improve the resistance to stresses induced by bollworms,cotton leaf curl virus,heat,drought,and salt.The approval of transgenic lines harboring triple gene Cry1Ac+Cry2A+GTG are critical for cotton crop.This review has critically discussed the progress and limitations of cotton breeding in Pakistan,and reviewed the utilization of novel genetic variations and selection tools for sustainable cotton production.
文摘Most of model cotton varieties used in tissue culture have glands on both the reproductive and vegetative parts of the plant.These glands contain compounds that are toxic to human and non-ruminant animals.The presence of these compounds limits their usage as food and feed.To obtain a glandless cotton variety with high-frequency somatic embryo production ability,27 glandless varieties
文摘Mutations are possibly the only source ofcreating heritable variability in all biologicalsystem and,many useful mutants in plants havebeen released for commercial cultivation acrossthe world.To-date throughout the world about2252 mutants have been officially registered inthe FAO/IAEA mutant varieties data
文摘A wheat breeding model for high yield in the middle and south of Hebei Province was developed. Wheat variety Ji 84-5418 has been bred on this model. The analysis results of high-yield and stability indicated that Ji 84-5418 was not only an aggregate of varied excellent characters,but a recombined biotype which could early differentiate spike and develop coordi-nately,and had better self-regulation ability and potential high productivity. Its yield is stable at 6000-8250 kg/ha.
文摘Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.
基金funded through Cotton Breeding Australia,a Joint Venture between CSIRO and Cotton Seed Distributors(Wee Waa,NSW 2388,Australia)。
文摘Results The population had large variations for lint yield,fibre properties,predicted yarn properties,and composite fibre quality values.Lint yield with all fibre quality traits was not correlated.When the selection was conducted first to keep those with improved fibre quality,and followed for high yields,a large proportion in the resultant populations was the same between selections based on Cottonspec predicted yarn quality and HVI-measured fibre properties.They both exceeded the selection based on FQI and Background The approach of directly testing yarn quality to define fibre quality breeding objectives and progress the selection is attractive but difficult when considering the need for time and labour.The question remains whether yarn prediction tools from textile research can serve as an alternative.In this study,using a dataset from three seasons of field testing recombinant inbred line population,Cottonspec,a software developed by the Commonwealth Scientific and Industrial Research Organisation(CSIRO)for predicting ring spun yarn quality from fibre properties measured by High Volume Instrument(HVI),was used to select improved fibre quality and lint yield in the population.The population was derived from an advanced generation inter-crossing of four CSIRO conventional commercial varieties.The Cottonspec program was able to provide an integrated index of the fibre qualities affecting yarn properties.That was compared with selection based on HVI-measured fibre properties,and two composite fibre quality variables,namely,fibre quality index(FQI),and premium and discount(PD)points.The latter represents the net points of fibre length,strength,and micronaire based on the Premiums and Discounts Schedule used in the market while modified by the inclusion of elongation.PD points.Conclusions The population contained elite segregants with improved yield and fibre properties,and Cottonspec predicted yarn quality is useful to effectively capture these elites.There is a need to further develop yarn quality prediction tools through collaborative efforts with textile mills,to draw better connectedness between fibre and yarn quality.This connection will support the entire cotton value chain research and evolution.
文摘Mutagenic breeding has been carried out in China since 1986 by on boarding the crop seeds in recoverable satellite and balloon. Good results have been obtained. Some new crop lines with high-yield, good-quantity, disease resistant characters were obtained respectively.
文摘The narrow genetic base in potato (Solanum tuberosum L.) limits the progress in cultivar development.The rich diploid germplasm in the origin center of potato provide a unique resource for improvement of tetraploid potatoes.Seven newly developed diploid hybrids with 2n pollen production,all of which have S. phureja background,were developed and evaluated for their value in potato breeding.They were crossed as male parnets to six tetraploid Solanum tuberosum cultivars,and seeds in large quantity from eleven crosses were obtained.Main agronomic traits,such as tuber yield,tuber number,mean tuber weight,tuber shape,eye depth,skin smoothness,flesh color,and specific gravity,were measured for 4x 2x tetraploid progenies in seedling generation,and their parents as well.All of the diploid hybrids had some merit for specific traits and the DH39 was more promising;high specific gravity trait in some diploid hybrids was successfully introgressed into tetroploid progenies via 4x 2x crosses.These diploid hybrids have potential value in potato breeding.
文摘The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resistance in the F 1 varied with the synthetic wheat accessions used as crossing parents.In the F 4,some resistant head lines were generated from the crosses,although their parents had different scab resistance levels.It indicated that synthetic hexaploid wheat are useful in wheat breeding for scab resistance.
文摘Both Fusarium and Verticillium wilts are important soil-borne diseases,which can not be effectively controlled by chemical fungicides.The two diseases,especially Verticillium wilt,have
文摘Informative,portable,and efficient DNA markers have the potential to accelerate genetic gain in cotton breeding.Discovery and widespread application of DNA markers to cotton has
文摘The sea cucumber is a highly esteemed source of nourishment,recognized as one of the“Eight Treasures of the Sea.”The bioactive compounds derived from sea cucumbers exhibit diverse physiological activities,including anti-tumor,antioxidant,anti-coagulation,anti-viral,anti-fatigue,immune enhancement,cognitive improvement,and metabolic regulation.Notably,within the skincare sector,these compounds demonstrate significant anti-aging,moisturizing,whitening,wrinkle reduction,repair and inhibition of melanin production properties.This article assesses the current state of sea cucumber aquaculture in China and the utilization of its bioactive ingredients in skincare formulations.The objective is to furnish additional raw materials and semi-finished products for China’s skincare and pharmaceutical industries,to advance the integration of sea cucumber bioactive components within these sectors,and to invigorate the rapid development of the tropical sea cucumber breeding industry.
基金supported by the Fund for BTNYGG(NYHXGG,2023AA102)the National Natural Science Foundation of China(32260510)+3 种基金the Key Project for Science,Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)Shihezi University high-level talent research project(RCZK202337)Science and Technology Major Project of the Department of Science and Technology of Xinjiang Uygur Autonomous region(2022A03004-1)the Key Programs for Science and Technology Development in Agricultural Field of Xinjiang Production and Construction Corps。
文摘Background Cotton is a significant crop for fiber production;however,seed shape-related traits have been less investigated in comparison to fiber quality.Comprehending the genetic foundation of traits associated with seed shape is crucial for improving the seed and fiber quality in cotton.Results A total of 238 cotton accessions were evaluated in four different environments over a period of two years.Traits including thousand grain weight(TGW),aspect ratio(AR),seed length,seed width,diameter,and roundness demonstrated high heritability and significant genetic variation,as indicated by phenotypic analysis.The association analysis involved 145 simple sequence repeats(SSR)markers and identified 50 loci significantly associated with six traits related to seed shape.The markers MON_DPL0504aa and BNL2535ba were identified as influencing multiple traits,including aspect ratio and thousand grain weight.Notably,markers such as HAU2588a and MUSS422aa had considerable influence on seed diameter and roundness.The identified markers represented an average phenotypic variance between 3.92%for seed length and 16.54%for TGW.Conclusions The research finds key loci for seed shape-related traits in cotton,providing significant potential for marker-assisted breeding.These findings establish a framework for breeding initiatives focused on enhancing seed quality,hence advancing the cotton production.
基金Supported by Tianjin Science and Technology Plan Projects(22ZYCGSN00050,22ZYCGSN0024023ZYCGSN00350,23ZYCGSN00310,24ZYCGSN00080)+3 种基金Gansu Provincial Science and Technology Plan(22CX8NE20823CXND0002)Gannan Prefecture Science and Technology Plan Project(2023ZZ1NC006)Tianjin Education Commission Research Program Project(2022ZD004)。
文摘In recent years,the quality of people's lives has gradually improved,and people pay more attention to the rationality of food nutrition.Green and healthy aquatic products,as representative of high-protein and low-fat foods,are increasingly sought after by people.Triploid rainbow trout(Oncorhynchus mykiss)is rich in multiple unsaturated fatty acids and trace elements,which have rich nutrition and delicate flesh,its market demand is increasing.Triploid rainbow trout aquaculture has gradually become a characteristic economic industry in China.The triploid rainbow trout is favored by farmers because of its fast growth rate,delicious meat and large population.However,the development of triploid rainbow trout aquaculture is also restricted by many problems,such as unreasonable breeding management,high feed cost and low processing efficiency.Based on the research reports of domestic and foreign experts and scholars,this paper summarized the research progress of triploid rainbow trout,analyzed the influence of different farming models,nutritional needs,disease prevention on the triploid rainbow trout industry,and put forward suggestions for the development of triploid rainbow trout industry in order to provide scientific reference for the further development of triploid rainbow trout farming technology in China.
基金Centre for Advance Studies in Agricultural Food Security and Punjab Agricultural Research Board for providing funds under CAS-PARB project(No.964).
文摘Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threatened by the unpre-dictable changes in climate,specifically high temperatures.Breeding heat-tolerant,high-yielding cotton cultivars with wide adaptability to be grown in the regions with rising temperatures is one of the primary objectives of modern cotton breeding programmes.Therefore,the main objective of the current study is to figure out the effective breed-ing approach to imparting heat tolerance as well as the judicious utilization of commercially significant and stress-tolerant attributes in cotton breeding.Initially,the two most notable heat-susceptible(FH-115 and NIAB Kiran)and tolerant(IUB-13 and GH-Mubarak)cotton cultivars were spotted to develop filial and backcross populations to accom-plish the preceding study objectives.The heat tolerant cultivars were screened on the basis of various morphological(seed cotton yield per plant,ginning turnout percentage),physiological(pollen viability,cell membrane thermostabil-ity)and biochemical(peroxidase activity,proline content,hydrogen peroxide content)parameters.Results The results clearly exhibited that heat stress consequently had a detrimental impact on every studied plant trait,as revealed by the ability of crossing and their backcross populations to tolerate high temperatures.However,when considering overall yield,biochemical,and physiological traits,the IUB-13×FH-115 cross went over particularly well at both normal and high temperature conditions.Moreover,overall seed cotton yield per plant exhibited a posi-tive correlation with both pollen viability and antioxidant levels(POD activity and proline content).Conclusions Selection from segregation population and criteria involving pollen viability and antioxidant levels concluded to be an effective strategy for the screening of heat-tolerant cotton germplasms.Therefore,understanding acquired from this study can assist breeders identifying traits that should be prioritized in order to develop climate resilient cotton cultivars.
文摘Heat waves,and an increased number of warm days and nights,have become more prevalent in major agricultural regions of the world.Although well adapted to semi-arid regions,cotton is vulnerable to high temperatures,particularly during flowering and boll development.To maintain lint yield potential without compromising its quality under high-temperature stress,it is essential to understand the effects of heat stress on various stages of plant growth and development,and associated tolerance mechanisms.Despite ongoing efforts to gather data on the effects of heat stress on cotton growth and development,there remains a critical gap in understanding the distinct influence of high temperatures during the day and night on cotton yield and quality.Also,identifying mechanisms and target traits that induce greater high day and night temperature tolerance is essential for breeding climate-resilient cotton for future uncertain climates.To bridge these knowledge gaps,we embarked on a rigorous and comprehensive review of published literature,delving into the impact of heat stress on cotton yields and the consequential losses in fiber quality.This review encompasses information on the effects of heat stress on growth,physiological,and biochemical responses,fertilization,cotton yield,and quality.Additionally,we discuss management options for minimizing heat stress-induced damage,and the benefits of integrating conventional and genomics-assisted breeding for developing heat-tolerant cotton cultivars.Finally,future research areas that need to be addressed to develop heat-resilient cotton are proposed.Keywords Controlled environment, Cotton, Fiber yield and quality, Heat stress, Heat tents, Reproductive failure 。