期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Breakdown mechanism of CF_4 and N_2 binary gas in refrigeration temperature range
1
作者 LI Wei-guo HOU Meng-xi +2 位作者 YUAN Chuang-ye CHENG Yu-di TU You-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1701-1707,共7页
The mechanism of gas discharge in refrigeration temperature range is still not clear. N2, CF4, 20% CF4+N2 and 50%CF4+50%N2 binary gas mixtures were tested under the conditions of –153–25 ℃ and 50–2000 Pa. The ex... The mechanism of gas discharge in refrigeration temperature range is still not clear. N2, CF4, 20% CF4+N2 and 50%CF4+50%N2 binary gas mixtures were tested under the conditions of –153–25 ℃ and 50–2000 Pa. The experimental results show that the minimum of Paschen curves of all test samples shifts to low pressure, from 500 Pa to 200 Pa. The value of Paschen curve minimum of N2 shows remarkable fluctuation. This fluctuation is explained by molecule agglomeration and electronic mean energy. The fluctuation decreases with the increasing mixing ratio of CF4. What’s more, the value of Paschen curve minimum of CF4 decreases with temperature. This phenomenon is ascribed to attach-radiation and secondary process. 展开更多
关键词 CF4 N2 AGGLOMERATION attach-radition breakdown mechanism refrigeration temperature range
在线阅读 下载PDF
基于PIC-MCC法的真空灭弧室电弧放电机理(英文) 被引量:7
2
作者 曹云东 李静 +2 位作者 刘晓明 侯春光 王尔智 《高电压技术》 EI CAS CSCD 北大核心 2011年第11期2752-2757,共6页
With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is t... With the raise of voltage level in electric power grid,the phenomena of high voltage gas insulation has received extensive attention from all over the world.The research on the breakdown mechanism of vacuum which is the main insulation gas in high voltage level is one of the most important issues.It is also important to the study of vacuum arc in vacuum switch.But for the limitations of available method used in analyzing the breakdown mechanism of vacuum,the main research on vacuum breakdown is macroscopic experiment.The experiments are greatly influenced by environmental factors and high vacuum degree is difficult to be ensured.So the data from the experiments are dispersive and the complex physical change in vacuum breakdown can not be revealed.The purpose of this work is to analyze the mechanism of vacuum breakdown quantitatively by microscopic numerical simulation.The particle in cell and Monte Carlo methods are used here to solve microscopic dynamic equation of gas.Based on the field emission theory in vacuum,electrons produced by the cathode and ions produced by the collision between electron and metal vapor molecule are the objects of this study.The motions of microscopic particles which are at the functions of the applied and self-consistent electric filed are traced in time and two space dimensions.Mont Carlo method is used here to cope with the collisions between electrons and metal vapor molecules.The cross sections of the collision which is related with the energy are all from the experiments.The secondary electron emission,exciting,elastic and ionizing collisions between electrons and metal vapor molecules have been considered in this paper.By the simulation,the number densities of electron and ion are acquired and the microscopic dynamic electric field produced by space charge is also calculated. The effect of vacuum degree on discharge voltage is also discussed here.According to the simulation data,we draw the conclusion that the main reason for vacuum arc formation is metal vapor ionization and large amount of metal gas is from high energy electrons' collision with the anode. 展开更多
关键词 PIC-MCC vacuum breakdown mechanism two dimension space charge dynamic electric field Boltzmann equation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部