The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The re...The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The relationship between the ratio of Fe-Al compound at interface and bonding parameters (such as preheat temperature of steel plate, solid fraction of Al-7graphite slurry and rolling speed) was established by artificial neural networks perfectly. The results show that when the bonding parameters are 516 ℃ for preheat temperature of steel plate, 32.5% for solid fraction of Al-7graphite slurry and 12 mm/s for rolling speed, the reasonable ratio of Fe-Al compound corresponding to the largest interfacial shear strength of bonding plate is obtained to be 70.1%. This reasonable ratio of Fe-Al compound is a quantitative criterion of interracial embrittlement, namely, when the ratio of Fe-Al compound at interface is larger than 70.1%, interfacial embrittlement will occur.展开更多
Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 6...Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was...Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.展开更多
Before densification by chemical vapor infiltration,carbon or SiC nanofibers were grown on the surface of carbon fibers by catalytic chemical vapor deposition using electroplated Ni as catalyst.The modification and me...Before densification by chemical vapor infiltration,carbon or SiC nanofibers were grown on the surface of carbon fibers by catalytic chemical vapor deposition using electroplated Ni as catalyst.The modification and mechanism of nanofibers on the pyrocarbon deposition during chemical vapor infiltration were investigated.The results show that the nanofibers improve the surface activity of the carbon fibers and become active nucleation centers during chemical vapor infiltration.They can induce the ordered deposition of pyrocarbon and adjust the interface bonding between pyrocarbon and carbon fibers during the infiltration.展开更多
基金Project(50054) supported by the Program for New Century Excellent Talents in Universityproject(20060004020) supported by the Research Fund for the Doctoral Program of Higher Education+1 种基金project(3062017) supported by the Natural Science Foundation of Beijing, Chinaproject(2004SZ007) supported by the Foundation of Beijing Jiaotong University
文摘The ratio of Fe-Al compound at the bonding interface of solid steel plate to Al-7graphite slurry was used to characterize the interracial structure of steel-Al-7graphite semi-solid bonding plate quantitatively. The relationship between the ratio of Fe-Al compound at interface and bonding parameters (such as preheat temperature of steel plate, solid fraction of Al-7graphite slurry and rolling speed) was established by artificial neural networks perfectly. The results show that when the bonding parameters are 516 ℃ for preheat temperature of steel plate, 32.5% for solid fraction of Al-7graphite slurry and 12 mm/s for rolling speed, the reasonable ratio of Fe-Al compound corresponding to the largest interfacial shear strength of bonding plate is obtained to be 70.1%. This reasonable ratio of Fe-Al compound is a quantitative criterion of interracial embrittlement, namely, when the ratio of Fe-Al compound at interface is larger than 70.1%, interfacial embrittlement will occur.
基金Project(2009ZM0296) supported by the Fundamental Research Funds for the Central Universities in China
文摘Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.
基金Project(52064032)supported by the National Natural Science Foundation of ChinaProjects(2019ZE001,202002AB080001)supported by the Yunnan Science and Technology Projects,ChinaProject(YNWR-QNBJ-2018-005)supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents,China。
文摘Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites.
基金Project(12JJ6051) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2011CB605806) supported by the National Basic Research Program of China
文摘Before densification by chemical vapor infiltration,carbon or SiC nanofibers were grown on the surface of carbon fibers by catalytic chemical vapor deposition using electroplated Ni as catalyst.The modification and mechanism of nanofibers on the pyrocarbon deposition during chemical vapor infiltration were investigated.The results show that the nanofibers improve the surface activity of the carbon fibers and become active nucleation centers during chemical vapor infiltration.They can induce the ordered deposition of pyrocarbon and adjust the interface bonding between pyrocarbon and carbon fibers during the infiltration.