期刊文献+
共找到1,178篇文章
< 1 2 59 >
每页显示 20 50 100
Application of particle swarm optimization blind source separation technology in fault diagnosis of gearbox 被引量:5
1
作者 黄晋英 潘宏侠 +1 位作者 毕世华 杨喜旺 《Journal of Central South University》 SCIE EI CAS 2008年第S2期409-415,共7页
Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on parti... Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault. 展开更多
关键词 PSO blind source separation FAULT diagnosis FAULT information enhancement GEARBOX
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
2
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted K-means clustering.
在线阅读 下载PDF
Blind source separation of ship-radiated noise based on generalized Gaussian model 被引量:2
3
作者 Kong Wei Yang Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期321-325,共5页
When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model ... When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function. 展开更多
关键词 blind source separation bss independent component analysis (ICA) generalized Gaussian model(GGM) maximum likelihood (ML).
在线阅读 下载PDF
Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method 被引量:9
4
作者 Xiang Wang Zhitao Huang Yiyu Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期17-25,共9页
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time... This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation. 展开更多
关键词 underdetermined blind source separation (Ubss)time-frequency (TF) domain sparse representation methoditerative adaptive approach direction-of-arrival (DOA) estimationclustering validation.
在线阅读 下载PDF
Online blind source separation based on joint diagonalization 被引量:2
5
作者 Li Ronghua Zhou Guoxu Yang Zuyuan Xie Shengli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期229-233,共5页
A new algorithm is proposed for joint diagonalization. With a modified objective function, the new algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, ... A new algorithm is proposed for joint diagonalization. With a modified objective function, the new algorithm not only excludes trivial and unbalanced solutions successfully, but is also easily optimized. In addition, with the new objective function, the proposed algorithm can work well in online blind source separation (BSS) for the first time, although this family of algorithms is always thought to be valid only in batch-mode BSS by far. Simulations show that it is a very competitive joint diagonalization algorithm. 展开更多
关键词 blind source separation joint diagonalization nonconvex optimization
在线阅读 下载PDF
Algorithm for source recovery in underdetermined blind source separation based on plane pursuit 被引量:1
6
作者 FU Weihong WEI Juan +1 位作者 LIU Naian CHEN Jiehu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期223-228,共6页
In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms accordin... In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms. 展开更多
关键词 underdetermined blind source separation(Ubss) source recovery greedy algorithm plane pursuit
在线阅读 下载PDF
On-line blind source separation algorithm based on second order statistics 被引量:1
7
作者 何文雪 谢剑英 杨煜普 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期692-696,共5页
An on-line blind source separation (BSS) algorithm is presented in this paper under the assumption that sources are temporarily correlated signals. By using only some of the observed samples in a recursive calculati... An on-line blind source separation (BSS) algorithm is presented in this paper under the assumption that sources are temporarily correlated signals. By using only some of the observed samples in a recursive calculation, the whitening matrix and the rotation matrix could be approximately obtained through the measurement of only one cost function. SimNations show goad performance of the algorithm. 展开更多
关键词 blind source separation second order statistics cost function.
在线阅读 下载PDF
Blind radar signal separation algorithm based on third-order degree of cyclostationarity criteria
8
作者 FAN Xiangyu LIU Bin +2 位作者 DONG Danna CHEN You WANG Yuancheng 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1441-1453,共13页
Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability o... Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals. 展开更多
关键词 blind signal separation cyclostationary frequency Givens matrix degree of cyclostationarity(DCS)blind source separation algorithm
在线阅读 下载PDF
A Blind Separation Approach of Low Order Cyclostationary Signals
9
作者 Wang Zhiyang Chen Jin Du Wenliao 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期159-164,共6页
This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity an... This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity and reducing the randomicity of cyclostationary signal and it is particularly applicable to the separation of low order cyclostationary signals.The method also demonstrates the importance of extraction of cyclostationary signals from low order to high order in turn.The effectiveness of the proposed method is finally demonstrated by computer simulation and experiment. 展开更多
关键词 blind source separation CYCLOSTATIONARY CYCLIC AUTOCORRELATION function machine FAULT diagnosis
在线阅读 下载PDF
UBSS and blind parameters estimation algorithms for synchronous orthogonal FH signals 被引量:12
10
作者 Weihong Fu Yongqiang Hei Xiaohui Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期911-920,共10页
By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. ... By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions. 展开更多
关键词 frequency hopping(FH) underdetermined blind source separation(Ubss parameters estimation CLUSTERING
在线阅读 下载PDF
基于UBSS算法的电力系统低频振荡辨识方法 被引量:2
11
作者 夏远洋 李啸骢 +2 位作者 徐俊华 刘治理 刘源 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5073-5083,I0005,共12页
低频振荡监测和分析对电力系统故障诊断和电网恢复至关重要。该文提出一种基于欠定盲源分离原理的低频振荡模式辨识方法,包括欠定盲源分离(underdetermined blind source separation,UBSS)和希尔伯特变换(Hilbert transform,HT)。首次... 低频振荡监测和分析对电力系统故障诊断和电网恢复至关重要。该文提出一种基于欠定盲源分离原理的低频振荡模式辨识方法,包括欠定盲源分离(underdetermined blind source separation,UBSS)和希尔伯特变换(Hilbert transform,HT)。首次系统地提出并论证含欠定盲源分离、模式定阶和振荡参数的辨识方法。提出的UBSS-HT方法利用能量比函数确定故障时刻,利用贝叶斯信息准则(Bayesian information criterion,BIC)实现模式定阶,阐述维度空间理论,论证构建虚拟多通道的可行性,通过盲源分离来实现源信号分离,最后通过HT在希尔伯特空间来辨识振荡参数。通过大量的系统建模仿真和现场录波数据试验评估所提方法的性能,验证该方法的有效性、准确性和抗干扰能力。 展开更多
关键词 欠定盲源分离 低频振荡 能量比函数 维度变换 源数估计
在线阅读 下载PDF
多谱自适应小波和盲源分离耦合的生理信号降噪方法
12
作者 王振宇 向泽锐 +2 位作者 支锦亦 丁铁成 邹瑞 《北京航空航天大学学报》 北大核心 2025年第3期910-921,共12页
为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信... 为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信噪比(SNR)和均方根误差(RMSE)。结果表明:所提方法在软阈值下具有较强的适用性,增强后的信号软阈值相比硬阈值,SNR提升约44.2%,RMSE下降约28.8%,处理时间减少约1.4%。软阈值相比自适应阈值,SNR提升约706%,RMSE下降约16.7%,处理时间减少约3.0%。为对比软阈值下各参数差异,使用软阈值对原始信号、加噪信号和增强信号进行对比分析及归一化处理。结果显示增强后的信号具有较好的SNR、较低的RMSE和较短的处理时间,软阈值下增强后的信号与原始信号相比,SNR提升约0.12%,RMSE下降约2.5%,处理时间减少约3.9%,进一步验证了所提方法的有效性,并提高了信号质量。 展开更多
关键词 多谱自适应小波 盲源分离 小波变换 降噪方法 生理信号
在线阅读 下载PDF
基于K-PSO和StOMP的往复压缩机激振信号盲源分离
13
作者 王金东 马智超 +2 位作者 赵海洋 李彦阳 张宇 《机床与液压》 北大核心 2025年第3期228-234,共7页
在当前信号的盲源分离中,传统“两步法”易陷入局部最优解,并且其准确率会随采集信号数的增加或稀疏性的降低而大幅下降。针对上述问题,提出一种结合K均值-粒子群(K-PSO)和分段正交匹配追踪(StOMP)的稀疏分量分析方法。对采集信号执行K... 在当前信号的盲源分离中,传统“两步法”易陷入局部最优解,并且其准确率会随采集信号数的增加或稀疏性的降低而大幅下降。针对上述问题,提出一种结合K均值-粒子群(K-PSO)和分段正交匹配追踪(StOMP)的稀疏分量分析方法。对采集信号执行K均值聚类算法,将产生的结果反馈至PSO聚类中估计混合矩阵。在获得混合矩阵后,将其源信号矩阵转化成列数为1的向量,再通过分段正交匹配追踪算法重构源信号。将实测的往复压缩机正常信号和3种单一故障信号混合成2种复合故障信号,并对复合故障信号进行试验验证。结果表明:在计算时间方面,相较模糊C均值聚类(0.335 s)和K均值聚类(0.299 s),尽管K-PSO聚类方法牺牲了一部分效率(1.561 s),但在总体角度偏差和归一化均方根误差方面表现更优,具有更好的估计精度;相较最短路径法(0.123 s),StOMP算法同样牺牲效率(2.031 s),却获得更佳的相关系数和均方根误差,表现更好的分离重构能力。这说明,该方法在盲源分离中具有可行性和实际应用价值。 展开更多
关键词 往复压缩机 欠定盲源分离 K均值聚类 粒子群算法 分段正交匹配追踪
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
14
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
基于FFT-MCC分析的ICA(BSS)盲不确定性消除 被引量:8
15
作者 焦卫东 杨世锡 +1 位作者 钱苏翔 严拱标 《中国机械工程》 EI CAS CSCD 北大核心 2006年第7期673-677,共5页
为了消除ICA(BSS)估计的幅值、相位及排序等盲不确定性,提出一种基于快速傅里叶变换与最大相关准则分析的ICA(BSS)估计源自适应校正方法。借助对原始传感观测及估计源的频谱分析,近似获得各本底源信号在观测信号中所占的比重———初始... 为了消除ICA(BSS)估计的幅值、相位及排序等盲不确定性,提出一种基于快速傅里叶变换与最大相关准则分析的ICA(BSS)估计源自适应校正方法。借助对原始传感观测及估计源的频谱分析,近似获得各本底源信号在观测信号中所占的比重———初始放大权值;基于最大相关准则优化调整ICA(BSS)估计源的相位,并对初始放大权值进行微调,从而消除ICA(BSS)估计的盲不确定性,实现源波形的恢复及其混合参数的估计。仿真试验结果证明了该方法的有效性,也表明它在复杂系统源识别或重建方面具有较大的应用潜力。 展开更多
关键词 盲源分离 独立分量分析 最大相关准则 源识别或重建
在线阅读 下载PDF
基于BSS的跳频通信抗部分频带噪声阻塞干扰方法 被引量:19
16
作者 于淼 王曰海 汪国富 《系统工程与电子技术》 EI CSCD 北大核心 2013年第5期1079-1084,共6页
根据跳频信号与部分频带噪声阻塞干扰信号的近似统计独立性,提出一种基于盲源分离的跳频通信对抗部分频带噪声阻塞干扰方法。所提方法利用分离信号的二阶或高阶统计量构建目标函数引导分离矩阵迭代,实现跳频信号与部分频带噪声阻塞干扰... 根据跳频信号与部分频带噪声阻塞干扰信号的近似统计独立性,提出一种基于盲源分离的跳频通信对抗部分频带噪声阻塞干扰方法。所提方法利用分离信号的二阶或高阶统计量构建目标函数引导分离矩阵迭代,实现跳频信号与部分频带噪声阻塞干扰信号的有效分离,从而提高跳频通信的抗干扰能力。仿真结果表明,所提方法可明显改善跳频通信在部分频带噪声阻塞干扰下的误码率性能,而且分离算法的处理时延很小,有望满足跳频通信的实际需求。 展开更多
关键词 抗干扰 跳频通信 盲源分离 独立分量分析 部分频带噪声阻塞干扰
在线阅读 下载PDF
基于EMMD和BSS的单通道旋转机械故障诊断方法 被引量:12
17
作者 孟宗 梁智 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第3期635-642,共8页
针对在欠定的观测信号情况下,传统基于矩阵的盲源分离算法效果比较差的问题,提出一种基于极值域均值模式分解和盲源分离的单通道旋转机械信号故障特征提取方法,并应用于实际的故障诊断中。该方法先通过极值域均值模式分解法分解观测信号... 针对在欠定的观测信号情况下,传统基于矩阵的盲源分离算法效果比较差的问题,提出一种基于极值域均值模式分解和盲源分离的单通道旋转机械信号故障特征提取方法,并应用于实际的故障诊断中。该方法先通过极值域均值模式分解法分解观测信号,把得到的固有模态函数和原观测信号一起组成新观测信号,从而实现了信号升维,使欠定问题转化为正定问题;然后,由奇异值分解和贝叶斯准则进行源数估计;最后,利用基于四阶累积量的特征矩阵联合对角化方法实现信号的盲分离。通过仿真,验证了该方法对旋转机械故障信号进行盲源分离的可行性。将提出的方法应用到齿轮和轴承系统的故障诊断中,进一步证明了该方法的有效性。 展开更多
关键词 故障诊断 旋转机械 盲源分离 极值域均值模式分解
在线阅读 下载PDF
基于盲源分离的多人呼吸信号检测方法
18
作者 杨轩 王子颖 +2 位作者 张力 赵恒 洪弘 《雷达学报(中英文)》 北大核心 2025年第1期117-134,共18页
近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常... 近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常将相位信号作为源信号进行分离,该文引入FMCW雷达下距离维信号和相位信号的对比,推导出相位信号作为源信号存在近似误差,并通过仿真验证距离维信号作为源信号时分离效果更好。另外,该文提出了基于非圆复数独立成分分析的多人呼吸信号分离算法,分析了不同呼吸信号参数对分离效果的影响,仿真和实测实验表明,所提出的方法适用于天线个数不小于目标个数时多人呼吸信号的检测,并且在目标角度差为9.46°时,也能够准确分离呼吸信号。 展开更多
关键词 非接触呼吸检测 FMCW雷达 多人呼吸检测 盲源分离 复数独立成分分析
在线阅读 下载PDF
基于EEMD-SCBSS的岩石声发射信号去噪方法 被引量:14
19
作者 赵奎 杨道学 +4 位作者 曾鹏 王晓军 钟文 龚囱 闫雷 《振动与冲击》 EI CSCD 北大核心 2021年第5期179-185,210,共8页
针对岩石声发射(AE)信号的低信噪比、随机性强、非平稳性等特点,提出了一种基于总体经验模态(EEMD)及单通道盲源分离(SCBSS)的AE信号滤波方法。将含有背景噪声的AE信号进行EEMD分解,得到一系列按频率从高到低排列的本征模函数(IMF);提... 针对岩石声发射(AE)信号的低信噪比、随机性强、非平稳性等特点,提出了一种基于总体经验模态(EEMD)及单通道盲源分离(SCBSS)的AE信号滤波方法。将含有背景噪声的AE信号进行EEMD分解,得到一系列按频率从高到低排列的本征模函数(IMF);提取高频背景噪声信号与观测信号构建虚拟多通道观测信号;利用快速不动点优化算法(FastICA)对构建的虚拟多通道观测信号进行盲源分离(BSS),进而得到滤波后的AE信号。通过构造含噪声AE信号进行数值仿真实验及实测数据分析,将基于EEMD及SCBSS滤波方法与小波阈值滤波方法进行比较。实验结果表明:小波阈值滤波方法会导致滤波后的AE信号频域信息失真,影响滤波后的AE信号上升时间,能量等参数识别;该方法可以对含噪声AE信号进行有效地滤波处理,能够较好地滤除AE信号中的非平稳随机噪声,并且能够保护滤波后的AE信号频域信息。 展开更多
关键词 岩石声发射信号 去噪 总体经验模态 单通道盲源分离
在线阅读 下载PDF
ASTFA-BSS方法及其在齿轮箱复合故障诊断中的应用 被引量:5
20
作者 杨宇 何知义 +1 位作者 李紫珠 程军圣 《中国机械工程》 EI CAS CSCD 北大核心 2015年第15期2051-2055,2061,共6页
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分... 自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。 展开更多
关键词 自适应最稀疏时频分析 盲源分离 齿轮箱 复合故障诊断
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部