Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind sourc...Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.展开更多
Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability o...Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals.展开更多
When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model ...When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.展开更多
自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分...自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。展开更多
基金supported by the National Natural Science Foundation of China(6237104662201048)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0260).
文摘Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.
基金supported by the National Natural Science Foundation of China(61502522).
文摘Separation and recognition of radar signals is the key function of modern radar reconnaissance,which is of great sig-nificance for electronic countermeasures and anti-countermea-sures.In order to improve the ability of separating mixed signals in complex electromagnetic environment,a blind source separa-tion algorithm based on degree of cyclostationarity(DCS)crite-rion is constructed in this paper.Firstly,the DCS criterion is con-structed by using the cyclic spectrum theory.Then the algo-rithm flow of blind source separation is designed based on DCS criterion.At the same time,Givens matrix is constructed to make the blind source separation algorithm suitable for multiple sig-nals with different cyclostationary frequencies.The feasibility of this method is further proved.The theoretical and simulation results show that the algorithm can effectively separate and re-cognize common multi-radar signals.
文摘When the distribution of the sources cannot be estimated accurately, the ICA algorithms failed to separate the mixtures blindly. The generalized Gaussian model (GGM) is presented in ICA algorithm since it can model non- Ganssian statistical structure of different source signals easily. By inferring only one parameter, a wide class of statistical distributions can be characterized. By using maximum likelihood (ML) approach and natural gradient descent, the learning rules of blind source separation (BSS) based on GGM are presented. The experiment of the ship-radiated noise demonstrates that the GGM can model the distributions of the ship-radiated noise and sea noise efficiently, and the learning rules based on GGM gives more successful separation results after comparing it with several conventional methods such as high order cumnlants and Gaussian mixture density function.
文摘自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法以分解得到的单分量个数最少为优化目标,以单分量的瞬时频率具有物理意义为约束条件,使得到的分量更加合理;结合盲源分离,提出了一种基于ASTFA的盲源分离方法并应用于齿轮箱复合故障诊断中。该方法首先利用ASTFA将单通道源信号进行分解,然后利用占优特征值法进行源数估计,根据源数重组观测信号,最后对观测信号进行盲源分离得到源信号的估计。实验结果表明,该方法可以有效地对齿轮箱复合故障信号进行分离进而实现齿轮箱的复合故障诊断。