期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Ammonia-induced CuO/13X for H_(2)S removal from simulated blast furnace gas at low temperature
1
作者 Erping Cao Yuhua Zheng +6 位作者 Hao Zhang Jianshan Wang Yuran Li Tingyu Zhu Zhan-guo Zhang Guangwen Xu Yanbin Cui 《Green Energy & Environment》 SCIE EI CAS 2025年第1期139-149,共11页
Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)gene... Blast furnace gas(BFG)is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation.However,the undesirable contaminants in BFG(especially H_(2)S)generate harmful environmental emissions.The desulfurization of BFG is urgent for integrated steel plants due to the stringent ultra-low emission standards.Compared with other desulfurization materials,zeolite-based adsorbents represent a viable option with low costs and long service life.In this study,an ammonia-induced CuO modified 13X adsorbent(NH_(3)–CuO/13X)was prepared for H_(2)S removal from simulated BFG at low temperature.The XRD,H_(2)-TPR and TEM analysis proved that smaller CuO particles were formed and the dispersion of Cu on the surface of 13X zeolite was improved via the induction of ammonia.Evaluation on H_(2)S adsorption performance of the adsorbent was carried out using simulated BFG,and the results showed that NH_(3)–CuO/13X-3 has better breakthrough sulfur capacity,which was more than twice the sulfur capacity of CuO/13X.It is proposed that the enhanced desulfurization performance of NH_(3)–CuO/13X is attributed to an abundant pore of 13X,and combined action of 13X and CuO.This work provided an effective way to improve the sulfur capacity of zeolite-based adsorbents via impregnation method by ammonia induction. 展开更多
关键词 blast furnace gas DESULFURIZATION Ammonia-induced CUO 13X zeolite
在线阅读 下载PDF
Indirect mineral carbonation of blast furnace slag with(NH4)2SO4 as a recyclable extractant 被引量:10
2
作者 Jinpeng Hu Weizao Liu +8 位作者 Lin Wang Qiang Liu Fang Chen Hairong Yue Bin Liang Li Lü Ye Wang Guoquan Zhang Chun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期927-935,共9页
Large quantities of COand blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial COemission reduction and comprehensive utilisation of the sol... Large quantities of COand blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial COemission reduction and comprehensive utilisation of the solid waste. In this study, a recyclable extractant,(NH)SO, was used to extract calcium and magnesium from blast furnace slag(main phases of gehlenite and akermanite) by using low-temperature roasting to fix COthrough aqueous carbonation. The process parameters and efficiency of the roasting extraction, mineralisation, and Al recovery were investigated in detail. The results showed that the extractions of Ca, Mg, and Al can reach almost 100% at an(NH4)SO-to-slag mass ratio of 3:1 and at 370°C in 1 h. Adjusting the p H value of the leaching solution of the roasted slag to 5.5 with the NHreleased during the roasting resulted in 99% Al precipitation, while co-precipitation of Mg was lower than 2%. The Mg-rich leachate after the depletion of Al and the leaching residue(main phases of CaSOand SiO) were carbonated using(NH)COand NHHCOsolutions, respectively, under mild conditions. Approximately 99% of Ca and 89% of Mg in the blast furnace slag were converted into CaCOand(NH)Mg(CO)·4 HO,respectively. The latter can be selectively decomposed to magnesium carbonate at 100-200 °C to recover the NHfor reuse. In the present route, the total COsequestration capacity per tonne of blast furnace slag reached up to 316 kg, and 313 kg of Al-rich precipitate, 1000 kg of carbonated product containing CaCOand SiO, and 304 kg of carbonated product containing calcium carbonate and magnesium carbonate were recovered simultaneously. These products can be used, respectively, as raw materials for the production of electrolytic aluminium, cement, and light magnesium carbonate to replace natural resources. 展开更多
关键词 blast furnace slag CO2 Mineral carbonation CO2 sequestration
在线阅读 下载PDF
Kinetics of the leaching of TiO_2 from Ti-bearing blast furnace slag 被引量:23
3
作者 LIU Xiao-hua GAI Guo-sheng +3 位作者 YANG Yu-fen SUI Zhi-tong LI Li FU Jian-xia 《Journal of China University of Mining and Technology》 EI 2008年第2期275-278,共4页
Ti-bearing blast furnace slag is a valuable secondary resource containing about 24 percent of TiO2.In this paper a process of leaching Ti-bearing blast furnace slag with sulfuric acid to recover TiO2,and the kinetics ... Ti-bearing blast furnace slag is a valuable secondary resource containing about 24 percent of TiO2.In this paper a process of leaching Ti-bearing blast furnace slag with sulfuric acid to recover TiO2,and the kinetics of that reaction,are described.Under laboratory conditions the rate is controlled by a chemical reaction.The leaching reaction is in accord with a shrinking unre- acted-core model.The apparent reaction order of the leaching reaction was 1.222 and the apparent activation energy was 87.01 kJ/mol.The model fits the observed data well until 90%of the TiO2 has be leached from the particles.The model disagrees with observations during later periods of the reaction because the solution becomes supersaturated with Ti ions,which precipitate as H2TiO4.The assumptions of constant reactant concentration and that there is no effect from the product layer on diffusion,also cause the model to deviate from the actual values. 展开更多
关键词 Ti-beafing blast furnace slag KINETICS LEACHING solid waste sec-reclamation
在线阅读 下载PDF
Characteristics of gaseous product from municipal solid waste gasification with hot blast furnace slag 被引量:8
4
作者 Lumei Zhao Hua Wang Shan Qing Huili Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第4期403-408,共6页
Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag... Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag.In this experiment,the thermal stability of the MSW was analyzed by thermogravimetric analysis,and effects of temperature,gasifying agent (air,N2,steam) and BF slag on the gas products were investigated at 600?900 ?C.The thermogravimetric analysis indicates that the weight loss of MSW includes four stages:evaporation of the moisture,combustion of volatile materials,burning of carbon residue and burnout of ash.The contents of the combustible gas increase with increasing temperature,and the lower calorific value (LCV) increases rapidly at 600?900 ?C.It is found that volume fraction of CO,H2 and CH4 at different atmospheres increases in the order N2〈air〈steam.It is believed that BF slag acts as the catalyst and the heat carrier,which promotes the gasification reactivity of MSW. 展开更多
关键词 gas characteristics municipal solid waste GASIFICATION blast furnace slag waste heat recovery
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部