期刊文献+
共找到3,525篇文章
< 1 2 177 >
每页显示 20 50 100
Semantic segmentation of camouflage objects via fusing reconstructed multispectral and RGB images
1
作者 Feng Huang Gonghan Yang +5 位作者 Jing Chen Yixuan Xu Jingze Su Guimin Huang Shu Wang Wenxi Liu 《Defence Technology(防务技术)》 2025年第8期324-337,共14页
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du... Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing. 展开更多
关键词 Camouflage object detection reconstructed multispectral image(MSI) Unmanned aerial vehicle(UAV) Semantic segmentation Remote sensing
在线阅读 下载PDF
Three-dimensional positions of scattering centers reconstruction from multiple SAR images based on radargrammetry 被引量:3
2
作者 钟金荣 文贡坚 +1 位作者 回丙伟 李德仁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1776-1789,共14页
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of... A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method. 展开更多
关键词 multiple synthetic aperture radar(SAR) images three-dimensional scattering center position reconstruction radargrammetry
在线阅读 下载PDF
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
3
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction SUPER-RESOLUTION singular value decomposition adaptive-threshold
在线阅读 下载PDF
Super-resolution image reconstruction based on three-step-training neural networks
4
作者 Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期934-940,共7页
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima... A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. 展开更多
关键词 image reconstruction SUPER-RESOLUTION three-steptraining neural network BP algorithm vector mapping.
在线阅读 下载PDF
Digital Imaging Reconstruction from Multiple Angle Diversity Using Digital Filtering Technique
5
作者 Wu Chuanjie and Li ShizhiDept. of Electronic Engineering, Beijing Institute of Technology P.O. Box 327, Beijing 100081, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1991年第1期67-73,共7页
Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the... Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the procedure can be used to measure permittivity distributions within dielectric objects and to image soft tissues for biomedical applications. The optimal resolution distance obtainable is half a wavelength, but this can rarely be achieved because of practical limitations. Some procedures, however, are available to improve the practical resolution. One, which is suitable for microwave tomography, is to use multiple angle views data and to combine the resulting images. The other, which is suitable for improving the image reconstruction resolution, is to use the digital filtering technique and the filtered backpropagation algorithm. A system operating over the X-band microwave frequency is described and some experimental results for objects in air are given. 展开更多
关键词 Digital filtering Digital image reconstruction Microwave diffraction tomography.
在线阅读 下载PDF
A fast, accurate and dense feature matching algorithm for aerial images 被引量:2
6
作者 LI Ying GONG Guanghong SUN Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1128-1139,共12页
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis... Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches. 展开更多
关键词 feature matching feature screening feature fusion aerial image three-dimensional(3D)reconstruction
在线阅读 下载PDF
A Sub-pixel Image Processing Algorithm of a Detector Based on Staring Focal Plane Array 被引量:1
7
作者 李雅琼 金伟其 +1 位作者 徐超 王霞 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第4期259-267,共9页
Optical micro-scanning technology can be used to increase spatial resolution of many optical imaging systems,especially thermal imaging system. One of its key issues is relevant image processing algorithm. A fast reco... Optical micro-scanning technology can be used to increase spatial resolution of many optical imaging systems,especially thermal imaging system. One of its key issues is relevant image processing algorithm. A fast reconstruction algorithm is proposed for two dimensional 2×2 micro-scanning based on the sub-pixel imaging and reconstruction principle of two-dimensional staring focal plane arrays (FPA). Specifically,three initialization methods are presented and implemented with the simulated data,their performances are compared according to image quality index.Experiment results show that,by the first initialization approach,timely over-sampled image can be accurately recovered,although special field diaphragm is needed. In the second initialization,the extrapolation approximation in obtaining reconstruction results is better than either bilinear interpolation or over-sampling reconstruction,without requiring any special process on system. The proposed algorithm has simple structure,low computational cost and can be realized in real-time. A high-resolution image can be obtained by low-resolution detectors. So,the algorithm has potential applications in visible light and infrared imaging area. 展开更多
关键词 像素 图像处理系统 遥感图像 图像处理方法
在线阅读 下载PDF
Wavelet-Based Mixed-Resolution Coding Approach Incorporating with SPT for the Stereo Image
8
作者 Xu, C. Zhang, Z. An, P. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期39-44,共6页
With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acqui... With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques. 展开更多
关键词 Data reduction DECODING image coding image compression image reconstruction imaging techniques Motion compensation Motion estimation Optical resolving power Projection systems Stereo vision Wavelet transforms
在线阅读 下载PDF
Fast view prediction for stereo images based on Delaunay triangular mesh model
9
作者 Guo Dabo Lu Zhaoyang Jiao Weidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期32-40,共9页
The view prediction is an important step in stereo/multiview video coding, wherein, disparity estil mation (DE) is a key and difficult operation. DE algorithms usually require enormous computing power. A fast DE alg... The view prediction is an important step in stereo/multiview video coding, wherein, disparity estil mation (DE) is a key and difficult operation. DE algorithms usually require enormous computing power. A fast DE algorithm based on Delaunay triangulation (DT) is proposed. First, a flexible and content adaptive DT mesh is established on a target frame by an iterative split-merge algorithm. Second, DE on DT nodes are performed in a three-stage algorithm, which gives the majority of nodes a good estimate of the disparity vectors (DV), by removing unreliable nodes due to occlusion, and forcing the minority of 'problematic nodes' to be searched again, within their umbrella-shaped polygon, to the best. Finally, the target view is predicted by using affine transformation. Experimental results show that the proposed algorithm can give a satisfactory DE with less computational cost. 展开更多
关键词 image reconstruction disparity estimation view prediction triangular mesh.
在线阅读 下载PDF
Frequency domain based super-resolution method for mixed-resolution multi-view images
10
作者 Zhizhong Fu Yawei Li +2 位作者 Yuan Li Lan Ding Keyu Long 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第6期1303-1314,共12页
Super-resolution (SR) techniques, which are based on single or multi-frame low-resolution (LR) images, have been extensively investigated in the last two decades. Mixed-resolution multiview video format plays an impor... Super-resolution (SR) techniques, which are based on single or multi-frame low-resolution (LR) images, have been extensively investigated in the last two decades. Mixed-resolution multiview video format plays an important role in three-dimensional television (3DTV) coding scheme. Previous work considers multiview or multi-camera images and videos at the same resolution, which performs well under the planar model without or with little projection error among the videos captured by different cameras. In recent years, several researchers have discussed the SR problem in mixed-resolution multi-view video format, where the superresolved image is created using the up-sampled version of the LR image and the high frequency components extracted from the warped image in the adjacent high-resolution (HR) views. Unfortunately, the output HR images suffer from artifacts caused by depth error. To obtain the detailed texture and edge information from the HR image as much as possible, while preserving the structure of the LR image, a novel SR reconstruction algorithm is proposed. The algorithm is composed of three components: the structure term, the detail information term, and the regularization term. The first term preserves the structure similarity of the LR image; the second term extracts detailed information from the adjacent HR image; and the last term ensures the uniqueness of the solution. Experimental results show the effectiveness and robustness of the proposed algorithm, which achieves high performance both subjectively and objectively. © 2016 Beijing Institute of Aerospace Information. 展开更多
关键词 Cameras Edge detection Frequency domain analysis image reconstruction Optical resolving power
在线阅读 下载PDF
Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction 被引量:1
11
作者 Jiaojiao Xiong Hongyang Lu +1 位作者 Minghui Zhang Qiegen Liu 《自动化学报》 EI CSCD 北大核心 2017年第10期1841-1849,共9页
关键词 梯度图像 稀疏编码 MRI 卷积 应用 分割图像 空间采样 磁共振成像
在线阅读 下载PDF
基于改进型生成对抗网络的矿井图像超分辨重建方法研究 被引量:1
12
作者 张帆 刘莹 +2 位作者 宋惠 张嘉荣 程海星 《煤炭科学技术》 北大核心 2025年第S1期338-345,共8页
智能化无人开采是煤炭资源绿色、智能、安全、高效开采的技术发展趋势,高分辨率的矿井图像能够为煤矿智能开采和智能监控提供关键技术支撑。针对煤矿井下雾尘环境,目前采用常规的深度学习方法虽然能够提高矿井图像重建效果,但是受井下... 智能化无人开采是煤炭资源绿色、智能、安全、高效开采的技术发展趋势,高分辨率的矿井图像能够为煤矿智能开采和智能监控提供关键技术支撑。针对煤矿井下雾尘环境,目前采用常规的深度学习方法虽然能够提高矿井图像重建效果,但是受井下环境噪声影响,模型训练的稳定性较差,难以获得矿井图像的重建高频信息,导致图像重构质量欠佳,易出现矿井图像模糊和分辨率下降等问题。针对上述问题,提出一种基于生成对抗网络的矿井图像超分辨率重建方法。该方法基于SRGAN网络,对网络结构和损失函数进行改进优化,在生成器的浅层特征提取层和重建层分别采用2个5×5的卷积层,并在浅层特征提取层的每个卷积层后加入非线性激活函数,深层特征提取层采用残差结构,通过级联亚像素卷积层以实现矿井图像不同倍数的超分辨重建;采用Wasserstein距离对损失函数进行改进,并去掉判别器输出层的Sigmoid,使用RMSProp方法对网络进行优化,提高模型训练的收敛速度和稳定性;利用训练好的生成器模型,据此分别对矿井图像进行2倍和4倍超分辨重建,并对实验结果进行主观视觉分析和客观评价。结果表明,与传统的双三次插值、SRCNN、SRGAN相比,在相同缩放因子条件下,所提方法的峰值信噪比分别提升了2.68、1.50和1.59 dB,结构相似性分别提升了0.033 4、0.004 8和0.006 1,所提方法能够重建出清晰的矿井图像纹理和细节信息,在主观视觉上以及峰值信噪比和结构相似性上都实现了更好的重建效果,且整体性能优于其他几种方法,有效提高了矿井图像的分辨率。 展开更多
关键词 煤矿智能化 矿井图像 超分辨重建 生成对抗网络 SRGAN
在线阅读 下载PDF
考虑局部纹理特征和全局温度分布的电力设备红外图像超分辨率重建方法 被引量:1
13
作者 赵洪山 王惠东 +5 位作者 刘婧萱 杨伟新 李忠航 林诗雨 余洋 吕廷彦 《电力系统保护与控制》 北大核心 2025年第2期89-99,共11页
针对传统电力设备红外图像超分辨率重建方法缺乏对设备局部纹理特征和全局温度分布的考虑导致重建后图像分辨率较低的问题,提出一种基于Transformer-GAN聚合网络的电力设备超分辨率重建方法。首先,基于移位卷积设计电力设备局部特征提... 针对传统电力设备红外图像超分辨率重建方法缺乏对设备局部纹理特征和全局温度分布的考虑导致重建后图像分辨率较低的问题,提出一种基于Transformer-GAN聚合网络的电力设备超分辨率重建方法。首先,基于移位卷积设计电力设备局部特征提取模块,在不增加参数情况下扩展卷积的感受野,提取电力设备局部纹理及其周围不同空间维度特征的信息。然后,引入全局特征提取模块,通过深度卷积和空间注意力机制捕捉图像不同区域间温度分布的关联性。最后,采用UNet编解码器网络融合各层局部特征和全局表示,生成清晰自然的电力设备红外图像。算例结果表明,所提方法的峰值信噪比(peak signal-to-noise ratio,PSNR)、结构相似性(structural similarity,SSIM)、和视觉信息保真度(visual information fidelity,VIF)三项评价指标均优于其他方法。同时它具有良好的主观视觉效果,泛化能力较强。 展开更多
关键词 电力设备 红外图像 超分辨率重建 局部纹理特征 全局温度分布 Transformer-GAN
在线阅读 下载PDF
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法 被引量:1
14
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-Transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
任意维度重建磁共振对骶管囊肿进行精准分型对于指导微创手术和康复的意义
15
作者 孙建军 马千权 +11 位作者 尹晓亮 杨辰龙 张嘉 陈素华 吴超 谢京城 韩芸峰 林国中 司雨 杨军 邬海博 赵强 《北京大学学报(医学版)》 北大核心 2025年第2期303-308,共6页
目的:运用任意维度重建磁共振对骶管囊肿进行精准分型,有效指导患者的微创手术和术后个性化康复。方法:2021年3—12月,应用任意维度重建磁共振评估骶管囊肿患者的围手术期状况,根据神经根或漏口轨迹重建出囊肿内神经根走行和囊肿漏口情... 目的:运用任意维度重建磁共振对骶管囊肿进行精准分型,有效指导患者的微创手术和术后个性化康复。方法:2021年3—12月,应用任意维度重建磁共振评估骶管囊肿患者的围手术期状况,根据神经根或漏口轨迹重建出囊肿内神经根走行和囊肿漏口情况,对骶管囊肿进行精准分型并精准设计手术切口和骶管后壁骨窗范围。于显微镜下验证术前分型的准确性,指导对应术式治疗不同类型的骶管囊肿。术后复查神经根水肿情况、术腔是否有积液等,制定患者个性化的康复方案,便于患者顺利康复。结果:92例骶管囊肿患者中,58例(63.0%)为内含神经根囊肿,29例(31.5%)为内无神经根囊肿,5例(5.4%)为混合型骶管囊肿。58例内含神经根囊肿的患者中,手术显微镜下复核影像临床分型的准确度可达96.6%(56/58),只有2例较大的单发囊肿、神经根在囊肿上极闪现被误认为内无神经根型。29例内无神经根的骶管囊肿患者中,显微镜下复核影像的准确度达100%。对12例复发骶管囊肿内部的神经根和漏口情况的判断准确度达到100%。术后1个月发现迟发性术腔积液2例,予以艾灸、泡澡等康复治疗,患者术后4~6个月积液消失。结论:任意维度重建磁共振在术前可准确判断骶管囊肿的临床分型,指导手术精准执行,并个性化改善患者的康复效果。 展开更多
关键词 骶管囊肿 临床分型 脊神经根 磁共振成像 图像重建
在线阅读 下载PDF
光照不均匀条件下无人机航拍低照度图像增强方法 被引量:1
16
作者 黄静 欧余韬 《现代电子技术》 北大核心 2025年第1期55-59,共5页
增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过... 增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过小波分解得到图像的高频参数和低频参数,分别通过双边滤波算法、软阈值方法和直方图对图像的低频参数和高频参数进行增强,采用小波重构对增强后的图像高频参数和低频参数进行重构,得到增强后的无人机航拍图像。通过实验验证,该方法能够实现一种效果较好的图像增强,在原始图像基础上,通过文中方法增强原始亮度8.14%、对比度提高了37.90%以及清晰度增加了31.01%,使得图像的整体质量得到了显著提升,为后续的图像分析、处理提供了更加准确、丰富的信息。 展开更多
关键词 无人机航拍 低照度图像增强 高斯滤波 小波分解与重构 双边滤波算法 软阈值方法
在线阅读 下载PDF
基于模板对齐与多阶段特征学习的光场角度重建
17
作者 郁梅 周涛 +3 位作者 陈晔曜 蒋志迪 骆挺 蒋刚毅 《电子与信息学报》 北大核心 2025年第2期530-540,共11页
现有光场图像角度重建方法通过探索光场图像内在的空间-角度信息以进行角度重建,但无法同时处理不同视点层的子孔径图像重建任务,难以满足光场图像可伸缩编码的需求。为此,将视点层视为稀疏模板,该文提出一种能够单模型处理不同角度稀... 现有光场图像角度重建方法通过探索光场图像内在的空间-角度信息以进行角度重建,但无法同时处理不同视点层的子孔径图像重建任务,难以满足光场图像可伸缩编码的需求。为此,将视点层视为稀疏模板,该文提出一种能够单模型处理不同角度稀疏模板的光场图像角度重建方法。将不同的角度稀疏模板视为微透镜阵列图像的不同表示,通过模板对齐将输入的不同视点层整合为微透镜阵列图像,采用多阶段特征学习方式,以微透镜阵列级-子孔径级的特征学习策略来处理不同输入的稀疏模板,并辅以独特的训练模式,以稳定地参考不同角度稀疏模板,重建任意角度位置的子孔径图像。实验结果表明,所提方法能有效地参考不同稀疏模板,灵活地重建任意角度位置的子孔径图像,且所提模板对齐与训练方法能有效地应用于其它光场图像超分辨率重建方法以提升其处理不同角度稀疏模板的能力。 展开更多
关键词 光场图像 角度重建 可伸缩编码 稀疏模板
在线阅读 下载PDF
基于深度学习重建算法的扩散加权成像在颅脑MRI检查中的应用价值
18
作者 张晏华 郁仁强 +5 位作者 郁斌 吴治伟 赵春刚 万露 万承鑫 张志伟 《磁共振成像》 北大核心 2025年第7期65-71,共7页
目的探讨基于深度学习重建算法(deep learning reconstruction,DLR)的扩散加权成像(diffusion weighted imaging,DWI)在颅脑MRI检查中的应用价值。材料与方法回顾性分析40例颅内占位性病变患者的MRI影像学资料,比较激励次数(number of e... 目的探讨基于深度学习重建算法(deep learning reconstruction,DLR)的扩散加权成像(diffusion weighted imaging,DWI)在颅脑MRI检查中的应用价值。材料与方法回顾性分析40例颅内占位性病变患者的MRI影像学资料,比较激励次数(number of excitations,NEX)为2和1时常规重建(c2-DWI,c1-DWI)与DLR(DL2-DWI,DL1-DWI)4组图像的质量差异,比较灰质、白质的信噪比(signal-to-noise ratio,SNR)、对比噪声比(contrast-to-noise ratio,CNR),病灶区域及对侧正常区域的表观扩散系数(apparent diffusion coefficient,ADC)。由两位医师采用双盲法对整体图像质量、噪声水平和磁敏感伪影分别使用5分法评分。结果DLR序列灰质和白质的SNR、CNR均高于常规重建序列,差异有统计学意义(P<0.001);ADC值在病变区域及对侧正常区域差异无统计学意义(P>0.05);DLR的整体图像质量和噪声水平评分均高于常规重建,差异有统计学意义(P<0.001);磁敏感伪影差异无统计学意义(P>0.05)。结论DLR可显著提升DWI图像SNR、CNR及主观评分,有效降低图像噪声,在NEX减半,缩短扫描时间的同时,虽对磁敏感伪影改善有限,但不影响ADC值的准确性。 展开更多
关键词 扩散加权成像 表观扩散系数 激励次数 深度学习重建 颅内占位性病变 磁共振成像
在线阅读 下载PDF
基于选通图像的超分辨率重建算法研究
19
作者 张正 郑颖俏 田青 《电子测量技术》 北大核心 2025年第9期189-197,共9页
激光距离选通技术能突破传统成像在雨雪雾、低光照和逆强光等复杂环境中无法成像的限制,但生成的选通图像是低质量灰度图,需要超分辨率重建技术着重于边缘信息和空间细节的重建,以提升视觉效果。由于选通图像缺乏颜色和丰富纹理信息,传... 激光距离选通技术能突破传统成像在雨雪雾、低光照和逆强光等复杂环境中无法成像的限制,但生成的选通图像是低质量灰度图,需要超分辨率重建技术着重于边缘信息和空间细节的重建,以提升视觉效果。由于选通图像缺乏颜色和丰富纹理信息,传统的特征提取方法容易产生冗余特征,影响重建效率。针对上述问题,本文提出了一种双聚合深层特征提取网络。首先,通过空间和通道重建卷积(SCConv)进行浅层特征提取,提高信息含量并解决冗余问题;其次,设计了一种新的深层特征提取模块,增强对选通图像边缘和细节的捕捉;最后,采用连续的最近邻插值加卷积操作进行图像重建,有效避免伪影问题。在选通图像数据集上的实验表明,相比基线的DAT算法,本文所提方法PNSR指标在2、3和4倍分辨率退化情况下分别提升了0.19 dB、0.12 dB和0.04 dB,SSIM在2、3和4倍分辨率退化情况下分别提升了0.0005、0.0008和0.0010,结果表明本文方法可以取得较好的视觉效果。 展开更多
关键词 选通图像 超分辨率重建 边缘增强
在线阅读 下载PDF
基于深度学习的复合超分辨率重建算法在膝关节MRI中的临床应用价值
20
作者 王超 谢晓亮 +4 位作者 朱熹 黄文诺 尚松安 叶靖 王志军 《放射学实践》 北大核心 2025年第1期67-72,共6页
目的:探讨临床环境中通过优化扫描参数结合基于深度学习的复合超分辨率重建算法在提升膝关节MRI扫描效率和图像质量的可行性。方法:前瞻性搜集110例行膝关节MRI平扫的患者,先后进行常规(常规组)与复合超分辨率重建算法扫描(复合组),采... 目的:探讨临床环境中通过优化扫描参数结合基于深度学习的复合超分辨率重建算法在提升膝关节MRI扫描效率和图像质量的可行性。方法:前瞻性搜集110例行膝关节MRI平扫的患者,先后进行常规(常规组)与复合超分辨率重建算法扫描(复合组),采用双盲法比较两组主客观图像质量。结果:相较常规组,复合组PD和T1序列的骨髓、软骨、半月板、韧带、肌肉、脂肪、关节液的SNR分别提升89.3%、52.5%、65.3%、73.8%、60.3%、103.9%、58.9%和78.0%、172.9%、78.0%、72.5%、75.4%、63.4%、97.0%。相较常规组,复合组PD和T1序列的软骨-关节液、软骨-骨髓、半月板-关节液、韧带-关节液、骨髓-关节液、脂肪-关节液、肌肉-关节液的CNR分别提升119.5%、83.3%、116.2%、109.2%、109.2%、99.3%、116.8%和61.7%、23.1%、78.7%、32.5%、161.7%、44.9%、39.2%。复合组的峰值信噪比(PSNR)相较常规组显著提高(P<0.05),结构相似度(SSIM)均>0.999。主观图像质量评价中复合组病灶边缘区分度、运动伪影和综合诊断度的主观评分显著高于常规组(P<0.05),两组病灶辨别度的主观评分差异无统计学意义(P>0.05)。结论:合理优化扫描参数并结合基于深度学习的复合超分辨率重建算法可在提升扫描效率的同时显著提高膝关节MRI的图像质量和综合诊断效果。 展开更多
关键词 卷积神经网络 深度学习 膝关节 磁共振成像 超分辨率重建
在线阅读 下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部