期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
1
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
在线阅读 下载PDF
Similarity matrix-based K-means algorithm for text clustering
2
作者 曹奇敏 郭巧 吴向华 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期566-572,共7页
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo... K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable. 展开更多
关键词 text clustering k-means algorithm similarity matrix F-MEASURE
在线阅读 下载PDF
An Improved K-Means Algorithm Based on Initial Clustering Center Optimization
3
作者 LI Taihao NAREN Tuya +2 位作者 ZHOU Jianshe REN Fuji LIU Shupeng 《ZTE Communications》 2017年第B12期43-46,共4页
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ... The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm. 展开更多
关键词 clustering k-means algorithm initial clustering center
在线阅读 下载PDF
Distance function selection in several clustering algorithms
4
作者 LUYu 《Journal of Chongqing University》 CAS 2004年第1期47-50,共4页
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical... Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts. 展开更多
关键词 distance function clustering algorithms k-means DENDROGRAM data mining
在线阅读 下载PDF
Machine Learning-Based Hybrid SSO-MA with Optimized Secure Link State Routing Protocol in Manet
5
作者 Varsha Ashok Khandekar Praveen Gupta 《China Communications》 2025年第3期164-180,共17页
A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANE... A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANET security,network longevity,and energy efficiency.Hence,selecting an appropriate cluster.The cluster’s head further boosts the network’s energy effectiveness.As a result,a Hybrid Swallow Swarm Optimisation-Memetic Algorithm(SSO-MA)is suggested to develop the energy efficiency&of the MANET network.Then,to secure the network Abnormality Detection System(ADS)is proposed.The MATLAB-2021a platform is used to implement the suggested technique and conduct the analysis.In terms of network performance,the suggested model outperforms the current Genetic Algorithm,Optimised Link State Routing protocol,and Particle Swarm Optimisation techniques.The performance of the model has a minimum delay in the range of 0.82 seconds and a Packet Delivery Ratio(PDR)of 99.82%.Hence,the validation shows that the Hybrid SSO-MA strategy is superior to the other approaches in terms of efficiency. 展开更多
关键词 attack detection system cluster head selection clustering mobile Ad-hoc network soft k-means SSO-MA optimization algorithm
在线阅读 下载PDF
Wind power time series simulation model based on typical daily output processes and Markov algorithm 被引量:3
6
作者 Zhihui Cong Yuecong Yu +1 位作者 Linyan Li Jie Yan 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期44-54,共11页
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe... The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves. 展开更多
关键词 Wind power Time series Typical daily output processes Markov algorithm Modified k-means clustering algorithm
在线阅读 下载PDF
基于聚类和K近邻算法的井下人员定位算法 被引量:13
7
作者 莫树培 唐琎 +2 位作者 汪郁 赖普坚 金礼模 《工矿自动化》 北大核心 2019年第4期43-48,76,共7页
针对现有基于指纹模的井下定位算法存在的计算量大、实时性低、定位精度较低的问题,提出了基于聚类和K近邻算法的井下人员定位算法。用二分k-means聚类算法对采集的RSSI数据进行分类,建立离线指纹数据库;无线移动终端和动态修正器实时采... 针对现有基于指纹模的井下定位算法存在的计算量大、实时性低、定位精度较低的问题,提出了基于聚类和K近邻算法的井下人员定位算法。用二分k-means聚类算法对采集的RSSI数据进行分类,建立离线指纹数据库;无线移动终端和动态修正器实时采集RSSI值,分别存储到在线定位数据库和动态修正数据库;根据待测点和动态修正器的离线数据和实时数据,采用软硬件动态修正加权K近邻算法计算权重值,结合离线指纹数据库中待测点的物理位置信息估算其实时位置。实验分析结果表明,所提定位算法的最小标准误差为0.46m,最大标准误差为3.26m,平均误差为1.62m。对比分析结果表明,与未进行聚类分析的算法相比,本文算法的精度更高,实时性更好;与未动态修正权重值的算法相比,本文算法的运算时间略有增加,但定位精度提高了37.21%。 展开更多
关键词 井下人员定位 指纹定位 二分k-means聚类算法 软硬件动态修正加权K近邻算法 动态修正
在线阅读 下载PDF
基于蚁群K均值聚类算法的边坡稳定性分析 被引量:5
8
作者 刘星 毕奇龙 郑付刚 《水电能源科学》 北大核心 2010年第8期108-109,169,共3页
针对岩石边坡稳定分析中常规聚类算法存在收敛速度慢、易陷入局部最优的局限性,基于蚁群信息素的K均值聚类法,提出一种解决边坡稳定性的新方法,分析了三峡库区36个边坡数据资料,并结合工程类比综合判断了边坡的稳定状态。结果表明,该法... 针对岩石边坡稳定分析中常规聚类算法存在收敛速度慢、易陷入局部最优的局限性,基于蚁群信息素的K均值聚类法,提出一种解决边坡稳定性的新方法,分析了三峡库区36个边坡数据资料,并结合工程类比综合判断了边坡的稳定状态。结果表明,该法的聚类效果优于常规聚类法,计算效率高,为边坡稳定性分级的聚类分析评价提供了新途径。 展开更多
关键词 蚁群 均值聚类算法 边坡稳定性分析 clustering algorithm k-means Ant Based Slope Stability 边坡稳定性分级 聚类法 边坡稳定分析 综合判断 稳定状态 数据资料 收敛速度 三峡库区 局部最优 计算效率 工程类比 分析评价
在线阅读 下载PDF
基于多维特征向量的网络社团划分方法
9
作者 葛新 赵海 +1 位作者 张昕 李超 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第7期944-947,共4页
为了寻找大规模复杂网络中的社团结构,提出了基于多维特征向量的社团划分方法,即多维特征向量谱平分法.利用网络连接矩阵的多维特征向量划分网络社团,通过仿真实验分析关键参数对划分效果的影响,从而确定使得划分结果最优的参量值,并综... 为了寻找大规模复杂网络中的社团结构,提出了基于多维特征向量的社团划分方法,即多维特征向量谱平分法.利用网络连接矩阵的多维特征向量划分网络社团,通过仿真实验分析关键参数对划分效果的影响,从而确定使得划分结果最优的参量值,并综合多维特征量阈值和社团数目两方面的因素决定被划分的社团数目.在具有代表性的局域世界网络演化模型中进行仿真,证明该方法在网络聚簇特征不是很明显的情况下,能够有效划分网络中存在的多个社团,适应具有各种聚集特征的网络,说明该算法在实际网络中具有较高的应用价值. 展开更多
关键词 复杂网络 社团结构 谱平分法 多维特征向量 聚类系数
在线阅读 下载PDF
基于随机数三角阵映射的高维大数据二分聚类初始中心高效鲁棒生成算法 被引量:7
10
作者 李旻 何婷婷 《电子与信息学报》 EI CSCD 北大核心 2021年第4期948-955,共8页
Bisecting K-means算法通过使用一组初始中心对分割簇,得到多个二分聚类结果,然后从中选优以减轻局部最优收敛问题对算法性能的不良影响。然而,现有的随机采样初始中心对生成方法存在效率低、稳定性差、缺失值等不同问题,难以胜任大数... Bisecting K-means算法通过使用一组初始中心对分割簇,得到多个二分聚类结果,然后从中选优以减轻局部最优收敛问题对算法性能的不良影响。然而,现有的随机采样初始中心对生成方法存在效率低、稳定性差、缺失值等不同问题,难以胜任大数据聚类场景。针对这些问题,该文首先创建出了初始中心对组合三角阵和初始中心对编号三角阵,然后通过建立两矩阵中元素及元素位置间的若干映射,从而实现了一种从随机整数集合中生成二分聚类初始中心对的线性复杂度算法。理论分析与实验结果均表明,该方法的时间效率及效率稳定性均明显优于常用的随机采样方法,特别适用于高维大数据聚类场景。 展开更多
关键词 bisecting k-means 初始中心生成 三角矩阵映射 随机整数 高维大数据聚类 线性算法
在线阅读 下载PDF
Cruise missile multiple routes planning based on hybrid particle swarm optimization 被引量:1
11
作者 李帆 郝博 +1 位作者 赵建辉 薛蕾 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期354-360,共7页
In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to div... In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements. 展开更多
关键词 HPSO algorithm multiple routes planning PSO SA NICHE k-means clustering
在线阅读 下载PDF
Integrity-Management Characteristics and Efficiency Evaluation of Oil and Gas Pipelines
12
作者 Zhang Xiaodong Sun Jiazheng +1 位作者 Fu Yong Lei Shaojuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第4期139-150,共12页
Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based ... Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based on integritymanagement data published by the US Pipeline and Hazardous Materials Safety Administration, this study applied the k-means clustering and data envelopment analysis(DEA) methods to both explore the characteristics of pipeline-integrity management and evaluate its efficiency. The k-means clustering algorithm was found to be scientifically valid for classifying pipeline companies as either low-, medium-, or high-difficulty companies according to their integrity-management requirements. Regardless of a pipeline company's classification, equipment failure was found to be the main cause of pipeline failure. In-line inspection corrosion and dent tools were the two most-used tools for pipeline inspection. Among the types of repair, 180-day condition repairs were a key concern for pipeline companies. The results of the DEA analysis indicate that only three out of 34 companies were deemed to be DEA-effective. To improve the effectiveness of pipeline integrity management, we propose targeted directions and scales of improvement for non-DEA-effective companies. 展开更多
关键词 Integrity management k-means clustering algorithm data envelopment analysis safety management
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部