基于BEV(bird’s eye view)多传感器融合的自动驾驶感知算法近年来取得重大进展,持续促进自动驾驶的发展。在多传感器融合感知算法研究中,多视角图像向BEV视角的转换和多模态特征融合一直是BEV感知算法的重点和难点。笔者提出MSEPE-CRN(...基于BEV(bird’s eye view)多传感器融合的自动驾驶感知算法近年来取得重大进展,持续促进自动驾驶的发展。在多传感器融合感知算法研究中,多视角图像向BEV视角的转换和多模态特征融合一直是BEV感知算法的重点和难点。笔者提出MSEPE-CRN(multi-scale feature fusion and edge and point enhancement-camera radar net),一种用于3D目标检测的相机与毫米波雷达融合感知算法,利用边缘特征和点云提高深度预测的精度,实现多视角图像向BEV特征的精确转换。同时,引入多尺度可变形大核注意力机制进行模态融合,解决因不同传感器特征差异过大导致的错位。在nuScenes开源数据集上的实验结果表明,与基准网络相比,mAP提升2.17%、NDS提升1.93%、mATE提升2.58%、mAOE提升8.08%、mAVE提升2.13%,该算法可有效提高车辆对路面上运动障碍物的感知能力,具有实用价值。展开更多
文摘基于BEV(bird’s eye view)多传感器融合的自动驾驶感知算法近年来取得重大进展,持续促进自动驾驶的发展。在多传感器融合感知算法研究中,多视角图像向BEV视角的转换和多模态特征融合一直是BEV感知算法的重点和难点。笔者提出MSEPE-CRN(multi-scale feature fusion and edge and point enhancement-camera radar net),一种用于3D目标检测的相机与毫米波雷达融合感知算法,利用边缘特征和点云提高深度预测的精度,实现多视角图像向BEV特征的精确转换。同时,引入多尺度可变形大核注意力机制进行模态融合,解决因不同传感器特征差异过大导致的错位。在nuScenes开源数据集上的实验结果表明,与基准网络相比,mAP提升2.17%、NDS提升1.93%、mATE提升2.58%、mAOE提升8.08%、mAVE提升2.13%,该算法可有效提高车辆对路面上运动障碍物的感知能力,具有实用价值。