Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy a...Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy and poor convergence of these algorithms have been challenging for system operators.The bird swarm algorithm(BSA),a new bio-heuristic cluster intelligent algorithm,can potentially address these challenges;however,its computational iterative process may fall into a local optimum and result in premature convergence when optimizing small portions of multi-extremum functions.To analyze the impact of a multi-objective economic-environmental dispatching of a microgrid and overcome the aforementioned problems of the BSA,a self-adaptive levy flight strategy-based BSA(LF-BSA)was proposed.It can solve the dispatching problems of microgrid and enhance its dispatching convergence accuracy,stability,and speed,thereby improving its optimization performance.Six typical test functions were used to compare the LF-BSA with three commonly accepted algorithms to verify its excellence.Finally,a typical summer-time daily microgrid scenario under grid-connected operational conditions was simulated.The results proved the feasibility of the proposed LF-BSA,effectiveness of the multi-objective optimization,and necessity of using renewable energy and energy storage in microgrid dispatching optimization.展开更多
计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于...计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于委托信誉证明(Delegated Proof of Reputation,DPoR)共识机制增强系统的安全性。文中提出一种基于鸟群人工鱼群算法(Bird Swarm-Artificial Fish Swarm Algorithm,BS-AFSA)的区块链移动边缘计算卸载模型,将任务卸载问题转化为优化目标函数来降低计算开销。采用改进鸟群人工鱼群算法来优化任务时延和能量消耗,对算法中的行为参数进行针对性构造,并改进拥挤度因子来提高后期迭代中寻优的局部搜索精度。仿真结果表明,与其他基准算法相比,文中所提算法减少了陷入局部最优的可能性,并降低了联合卸载方案的系统总开销。展开更多
针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和...针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和混合核函数方法对LSSVM算法进行优化,并用优化后的LSSVM求解农杆菌ATCC31749发酵过程动力学模型,结合鸟群算法对动力学模型参数进行寻优;然后拟合出溶氧体积分数和各参数之间的关联函数模型,并代入到动力学模型,建立起以溶氧浓度作为关键控制变量的发酵动力学模型;最后,用鸟群算法对模型进行寻优,寻找使得发酵产物浓度最大的最优溶氧过程控制策略。实验仿真结果表明,混合模型的预测精度得到提高,产多糖期溶氧体积分数控制为52%时,产物质量浓度最大,为48.85 g/L。该研究所建立的农杆菌发酵过程混合模型及其溶氧优化结果,为发酵工业上进一步通过最佳溶氧控制策略来提高多糖产量提供了方向。展开更多
基金supported by the National Natural Science Foundation of China (No. 52061635103)
文摘Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy and poor convergence of these algorithms have been challenging for system operators.The bird swarm algorithm(BSA),a new bio-heuristic cluster intelligent algorithm,can potentially address these challenges;however,its computational iterative process may fall into a local optimum and result in premature convergence when optimizing small portions of multi-extremum functions.To analyze the impact of a multi-objective economic-environmental dispatching of a microgrid and overcome the aforementioned problems of the BSA,a self-adaptive levy flight strategy-based BSA(LF-BSA)was proposed.It can solve the dispatching problems of microgrid and enhance its dispatching convergence accuracy,stability,and speed,thereby improving its optimization performance.Six typical test functions were used to compare the LF-BSA with three commonly accepted algorithms to verify its excellence.Finally,a typical summer-time daily microgrid scenario under grid-connected operational conditions was simulated.The results proved the feasibility of the proposed LF-BSA,effectiveness of the multi-objective optimization,and necessity of using renewable energy and energy storage in microgrid dispatching optimization.
文摘计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于委托信誉证明(Delegated Proof of Reputation,DPoR)共识机制增强系统的安全性。文中提出一种基于鸟群人工鱼群算法(Bird Swarm-Artificial Fish Swarm Algorithm,BS-AFSA)的区块链移动边缘计算卸载模型,将任务卸载问题转化为优化目标函数来降低计算开销。采用改进鸟群人工鱼群算法来优化任务时延和能量消耗,对算法中的行为参数进行针对性构造,并改进拥挤度因子来提高后期迭代中寻优的局部搜索精度。仿真结果表明,与其他基准算法相比,文中所提算法减少了陷入局部最优的可能性,并降低了联合卸载方案的系统总开销。