Ammonium and nitrite are two substrates of anammox bacteria, but they are also inhibitors under high concentrations. The performance of two anaerobic ammonium-oxidizing (anammox) upflow biofilm (UBF) reactors was inve...Ammonium and nitrite are two substrates of anammox bacteria, but they are also inhibitors under high concentrations. The performance of two anaerobic ammonium-oxidizing (anammox) upflow biofilm (UBF) reactors was investigated. The results show that anammox UBFs become unstable under nitrogen loading rate (NLR) applied higher than 1.0 g/(L·d). The consumptions of acidity in the anammox reaction lead to the increase of pH, which is as high as 8.70-9.05. Free nitrous acid concentration is accompanied to be lower than the affinity constant of anammox bacteria, and then starvation effect appears. Moreover, free ammonia concentration increases to 57-178 mg/L, resulting in inhibitory effect on the anammox bacteria. Both negative effects contribute to the instability of the anammox bioreactors.展开更多
High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synth...High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.展开更多
Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,t...Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,two identical microbial electrolysis cell(MEC)based biosensors were inoculated with marine sediment and operated at two different anodic potentials,namely-300 mV and+250 mV relative to Ag/AgCl.The MEC biosensor operated under positive anodic potential conditions had electrochemically active microbial communities on the anode,including members of the Shewanellaceae,Pseudoalteromonadaceae,and Clostridiaceae families.However,the strictly anaerobic members of the Desulfuromonadaceae,Desulfobulbaceae and Desulfobacteraceae families were found only in the negative anodic potential MEC biosensor.The positive anodic potential MEC biosensor showed several other advantages as well,such as faster start-up,significantly higher maximum current production,fivefold improvement in the AOC detection limit,and tolerance of low dissolved oxygen,compared to those obtained from the negative anodic potential MEC biosensor.The developed positive anodic potential MEC biosensor can thus be used as a real-time and inexpensive detector of AOC concentrations in high saline and low DO seawater.展开更多
基金Project(2006AA06Z332) supported by the National High-Tech Research and Development Program of ChinaProject(30770039) supported by the National Natural Science Foundation of ChinaProject(2008BADC4B05) supported by the National Science and Technology Pillar Program
文摘Ammonium and nitrite are two substrates of anammox bacteria, but they are also inhibitors under high concentrations. The performance of two anaerobic ammonium-oxidizing (anammox) upflow biofilm (UBF) reactors was investigated. The results show that anammox UBFs become unstable under nitrogen loading rate (NLR) applied higher than 1.0 g/(L·d). The consumptions of acidity in the anammox reaction lead to the increase of pH, which is as high as 8.70-9.05. Free nitrous acid concentration is accompanied to be lower than the affinity constant of anammox bacteria, and then starvation effect appears. Moreover, free ammonia concentration increases to 57-178 mg/L, resulting in inhibitory effect on the anammox bacteria. Both negative effects contribute to the instability of the anammox bioreactors.
基金Projects(ZR2013BL010,ZR2012DL05)supported by the Natural Science Foundation of Shandong Province,ChinaProject(4041412016)supported by the Research Excellence Award of Shandong University of Technology,ChinaProjects(2013GG03116,2011GG02115)supported by the Science and Technology Development Planning Project of Zibo,China
文摘High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.
基金Zhenjiang City Key R&D Plan Modern Agriculture Project(No.SH2021017)Zhenjiang“Jinshan Talents”Project 2021Jiangsu Province“Six Talent Peak”Program(No.XCL-111)。
文摘Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,two identical microbial electrolysis cell(MEC)based biosensors were inoculated with marine sediment and operated at two different anodic potentials,namely-300 mV and+250 mV relative to Ag/AgCl.The MEC biosensor operated under positive anodic potential conditions had electrochemically active microbial communities on the anode,including members of the Shewanellaceae,Pseudoalteromonadaceae,and Clostridiaceae families.However,the strictly anaerobic members of the Desulfuromonadaceae,Desulfobulbaceae and Desulfobacteraceae families were found only in the negative anodic potential MEC biosensor.The positive anodic potential MEC biosensor showed several other advantages as well,such as faster start-up,significantly higher maximum current production,fivefold improvement in the AOC detection limit,and tolerance of low dissolved oxygen,compared to those obtained from the negative anodic potential MEC biosensor.The developed positive anodic potential MEC biosensor can thus be used as a real-time and inexpensive detector of AOC concentrations in high saline and low DO seawater.