Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN cha...Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN channels.The covertness is measured by the total variation distance between the channel output distributions induced with and without the transmission.We provide the exact expressions of the maximum amount of information that can be transmitted with the maximum error probability and the total variation less than any small numbers.The energy detection and the random coding are employed to prove our results.We further compare our results with those under relative entropy.The results show how many additional amounts of information can be transmitted covertly when changing the covertness constraint to total variation.展开更多
In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended...In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).展开更多
基金supported in part by the Natural Science Foundation of Xinjiang Uygur Autonomous Region under Grant 2022D01B184the National Natural Science Foundation of China under Grant 62301117,62131005.
文摘Covert communication guarantees the security of wireless communications via hiding the existence of the transmission.This paper focuses on the first and second order asymptotics of covert communication in the AWGN channels.The covertness is measured by the total variation distance between the channel output distributions induced with and without the transmission.We provide the exact expressions of the maximum amount of information that can be transmitted with the maximum error probability and the total variation less than any small numbers.The energy detection and the random coding are employed to prove our results.We further compare our results with those under relative entropy.The results show how many additional amounts of information can be transmitted covertly when changing the covertness constraint to total variation.
基金supported by the National Natural Science Foundation of China(No.61401164,No.61201145,No.61471175)the Natural Science Foundation of Guangdong Province of China(No.2014A030310308)the Supporting Plan for New Century Excellent Talents of the Ministry of Education(No.NCET-13-0805)
文摘In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).