期刊文献+
共找到5,377篇文章
< 1 2 250 >
每页显示 20 50 100
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
1
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm 被引量:3
2
作者 吴静敏 左洪福 陈勇 《Journal of Central South University》 SCIE EI CAS 2005年第S2期95-101,共7页
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se... A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network. 展开更多
关键词 aircraft design maintenance COST particle swarm optimization IMMUNITY algorithm PREDICT
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
3
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
4
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application 被引量:2
5
作者 李星梅 张立辉 +1 位作者 乞建勋 张素芳 《Journal of Central South University of Technology》 EI 2008年第1期141-146,共6页
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using... In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO. 展开更多
关键词 particle swarm extended particle swarm optimization algorithm resource leveling
在线阅读 下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
6
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
基于BPSO-PSO-LSSVM算法的上肢sEMG分类
7
作者 贠今天 苗冠 +1 位作者 李帅 耿梓敬 《科学技术与工程》 北大核心 2025年第18期7686-7692,共7页
作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,... 作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,该方法采用二进制粒子群优化(binary particle swarm optimization, BPSO)算法对特征进行筛选后,进一步采用粒子群优化(particle swarm optimization, PSO)算法调整最小二乘支持向量机(least squares support vector machine, LSSVM)的超参数。通过采集人上体4个部位的表面肌电信号并提取其中48维特征,对上肢常见的4种动作进行分类实验,结果表明,BPSO-PSO-LSSVM算法仅保留肌电数据的21维特征,得到的平均分类准确率达到97.54%,证明该方法可以有效筛选出用于上肢动作分类的最佳特征组合,并且提高运动分类的准确率。 展开更多
关键词 表面肌电信号 特征选择 二进制粒子群优化 粒子群优化 动作分类 最小二乘支持向量机
在线阅读 下载PDF
Bacterial graphical user interface oriented by particle swarm optimization strategy for optimization of multiple type DFACTS for power quality enhancement in distribution system 被引量:3
8
作者 M.Mohammadi M.Montazeri S.Abasi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期569-588,共20页
This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution syste... This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss. 展开更多
关键词 distribution system power quality single type and multiple type DFACTS BFO algorithm particle swarm optimization(PSO)
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
9
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
基于GA−BPSO算法的水下航行器艉部结构模态测点优化布置
10
作者 史乃轩 杨雨浓 +2 位作者 秦云龙 余新森 张冠军 《中国舰船研究》 北大核心 2025年第5期160-169,共10页
[目的]针对水下航行器艉部结构振型复杂、模态测试测点多的问题,提出一种基于遗传算法和二进制离散粒子群混合算法(GA-BPSO)的测点优化布置方法。[方法]首先,建立典型艉部结构有限元模型并提取结构参数,构建三维消冗指标和模态置信准则... [目的]针对水下航行器艉部结构振型复杂、模态测试测点多的问题,提出一种基于遗传算法和二进制离散粒子群混合算法(GA-BPSO)的测点优化布置方法。[方法]首先,建立典型艉部结构有限元模型并提取结构参数,构建三维消冗指标和模态置信准则的组合目标函数;然后,基于GA-BPSO算法对艉部结构进行模态测点优化布置;最后,为验证优化方法的有效性,开展艉部结构测点均匀布置和优化布置的模态对比实验。[结果]结果表明,优化后的测点数量由均匀布置方案的840个减少至200个,优化布置方案模态置信矩阵最大非对角元素降低至0.0333,频率误差控制在1%以内,且振型吻合度较高。[结论]所提方法有效兼顾了模态振型的线性独立性和可视化效果,可用于水下艉部结构模态测试。 展开更多
关键词 艉部结构 测点优化布置 遗传算法 粒子群算法 三维消冗模型 声学噪声测量 噪声控制
在线阅读 下载PDF
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
11
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
An immune-swarm intelligence based algorithm for deterministic coverage problems of wireless sensor networks 被引量:1
12
作者 刘继忠 王保磊 +1 位作者 敖俊宇 Q.M.Jonathan WU 《Journal of Central South University》 SCIE EI CAS 2012年第11期3154-3161,共8页
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the... A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters. 展开更多
关键词 wireless sensor network deterministic area coverage immune-swarm algorithm particle swarm optimization artificialimmune system
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
13
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
Momentum particle swarm optimizer
14
作者 Liu Yu Qin Zheng +1 位作者 Wang Xianghua He Xingshi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期941-946,共6页
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the orig... The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities. 展开更多
关键词 evolutionary computation particle swarm optimization optimization algorithm.
在线阅读 下载PDF
改进鲸鱼优化算法在前向激光散射颗粒测量技术粒径分布反演中的应用 被引量:1
15
作者 刘会玲 韩星星 +2 位作者 赵蓓 高冰 汪加洁 《光子学报》 北大核心 2025年第3期118-131,共14页
颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演... 颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演精度迅速恶化等问题。通过改进鲸鱼优化算法在多维函数求解寻优中的特性,针对前向激光散射法中颗粒粒径分布反演问题提出了一种对数形式的自适应概率阈值和非线性变化的收敛因子,提高了鲸鱼优化算法在反演寻优过程中平衡全局搜索以及局部寻优的能力。通过反向学习方法进行初始化以及借助贪婪原则进行个体更新,可以实现对颗粒粒度分布的精确快速反演。仿真结果表明,该算法对在不同程度随机噪声下服从正态分布、Rosin-Rammler分布和Johnson'S_(B)分布的单峰及多峰分布具有很好的鲁棒性与反演精度。将该算法应用于聚苯乙烯标准颗粒群的实验测量,得到了很好的反演结果,验证了该算法在抗噪性能和测量准确性上的有效性。 展开更多
关键词 前向激光散射 群智能优化算法 鲸鱼优化算法 颗粒粒度分布 多峰分布
在线阅读 下载PDF
基于改进粒子群算法的高地隙无人喷雾机对不规则凸田块的全覆盖作业路径规划 被引量:4
16
作者 刘国海 万亚连 +3 位作者 沈跃 刘慧 何思伟 张亚飞 《华南农业大学学报》 北大核心 2025年第3期390-398,共9页
【目的】满足高地隙无人喷雾机自主导航全覆盖作业的应用需求并优化农机作业效率。【方法】提出了一种针对不规则凸田块的全覆盖遍历路径规划算法。首先,通过获取农田区域的边界数据,得到不规则凸田块的边界轮廓模型;其次,在传统U型转... 【目的】满足高地隙无人喷雾机自主导航全覆盖作业的应用需求并优化农机作业效率。【方法】提出了一种针对不规则凸田块的全覆盖遍历路径规划算法。首先,通过获取农田区域的边界数据,得到不规则凸田块的边界轮廓模型;其次,在传统U型转弯方式的基础上,引入作业行与田块边界的夹角,对作业行间的衔接路径原理进行详细阐述;由经过不规则凸区域中心点的直线进行平行线偏移,生成随机方向角的全覆盖作业行后,通过改进的粒子群优化(Particle swarm optimizer,PSO)算法对作业行方向角进行最优化,规划出遍历田块的全覆盖作业路径;最后,将算法在4块典型实际田块中进行仿真测试。【结果】与传统路径规划算法相比,改进PSO算法在1~4个田块的总遍历距离分别减少9.01、23.25、8.71和14.32 m,转弯次数减少率分别下降11.1%、61.5%、16.7%和5.3%,额外覆盖比分别减少0.20、0.96、0.45和1.96个百分点,有效减少了无人农机的能量消耗、提高了作业效率。【结论】在作业区域被完全覆盖的前提下,本算法能规划出无人农机行驶路程较短、覆盖率较高和转弯次数较少的作业路径,可为无人农机的路径规划技术的发展提供理论支撑。 展开更多
关键词 无人农机 全覆盖路径规划 路径规划 粒子群算法 不规则凸田块 高地隙无人喷雾机
在线阅读 下载PDF
基于PSO-XGBoost的爆破振动峰值速度预测研究 被引量:1
17
作者 任高峰 邱浪 +4 位作者 徐琛 李吉民 胡英国 朱瑜劼 胡伟 《金属矿山》 北大核心 2025年第4期256-265,共10页
为实现爆破振动峰值速度的精准预测,减少爆破振动的危害,基于某爆破工程实测数据,通过基于决策树的特征重要性分析,选取了爆心距、炸药爆速、孔距、堵塞长度、孔深、单段药量6个变量作为输入特征,利用粒子群优化算法(PSO)对XGBoost模型... 为实现爆破振动峰值速度的精准预测,减少爆破振动的危害,基于某爆破工程实测数据,通过基于决策树的特征重要性分析,选取了爆心距、炸药爆速、孔距、堵塞长度、孔深、单段药量6个变量作为输入特征,利用粒子群优化算法(PSO)对XGBoost模型的决策树数目、决策树最大深度、学习率3个参数进行寻优,构建了PSO-XGBoost爆破振动峰值速度预测模型。通过对实例进行预测,得到预测结果的MSE、RMSE、R^(2)的值分别为1.44、1.16、0.91;通过与BPNN、AdaBoost、GBDT、RF、SVR模型的预测结果进行对比,PSO-XGBoost模型的预测性能最佳,预测结果最优。为了进一步推广应用预测成果,开发设计了一套爆破振动峰值速度预测系统。研究成果可为类似爆破工程振动预测提供一定的理论参考和实践指导。 展开更多
关键词 爆破振动 爆破振动峰值速度 粒子群优化算法 XGBoost算法 预测模型
在线阅读 下载PDF
区域时变路网下的低碳冷链配送路径优化研究 被引量:2
18
作者 杨立君 丁政罡 +3 位作者 左大发 钟双喜 张驰 石佳悦 《包装工程》 北大核心 2025年第7期212-223,共12页
目的优化在区域时变路网下的生鲜冷链配送路径,降低企业的配送成本,提高配送效率。方法针对冷链配送中的时效性和温控管理要求,构建结合道路拥堵状况的区域时变车辆行驶函数,建立基于生鲜冷链配送成本的优化模型;研究采用改进的粒子群算... 目的优化在区域时变路网下的生鲜冷链配送路径,降低企业的配送成本,提高配送效率。方法针对冷链配送中的时效性和温控管理要求,构建结合道路拥堵状况的区域时变车辆行驶函数,建立基于生鲜冷链配送成本的优化模型;研究采用改进的粒子群算法(PSO-GA)进行求解,并比较区域时变模型、时变模型、静态模型的优化结果。结果在求解精度和效率方面,PSO-GA均显著优于粒子群算法(PSO)和遗传算法(GA);在总配送成本方面,PSO-GA比PSO降低2.0%,比GA降低4.2%;在碳排放成本方面,PSO-GA比PSO降低3.9%,比GA降低11.2%。结论模型在区域复杂拥堵环境下成功降低配送成本和碳排放成本,能够较好地仿真现实道路交通配送现状,具有很好的实际意义。 展开更多
关键词 冷链物流 配送路径优化 时变速度 粒子群算法 碳排放
在线阅读 下载PDF
基于改进Otsu算法的金属器件镀锌表面缺陷识别方法 被引量:2
19
作者 马栎 冯占荣 《电镀与精饰》 北大核心 2025年第2期46-53,共8页
镀锌表面纹理、颜色以及亮度变化的复杂度往往较高,且不同的光照条件会对金属表面的反射和阴影产生显著影响,当前固定的阈值选择方式难以适应这种复杂多变的识别环境,影响当前人工智能领域中表面缺陷的识别效果,故提出了基于改进Otsu算... 镀锌表面纹理、颜色以及亮度变化的复杂度往往较高,且不同的光照条件会对金属表面的反射和阴影产生显著影响,当前固定的阈值选择方式难以适应这种复杂多变的识别环境,影响当前人工智能领域中表面缺陷的识别效果,故提出了基于改进Otsu算法的金属器件镀锌表面缺陷识别方法。首先,针对金属器件镀锌表面图像,根据结构张量提取图像的轮廓信息,利用Itti模型提取图像颜色和亮度信息,并分别生成各通道显著图。经规范化处理后,通过线性组合构成视觉显著图,用于初步判断图像中是否存在表面缺陷;然后,在常规的Otsu算法中,引入二阶振荡粒子群优化算法多次调整灰度阈值,利用最优的灰度阈值分割出缺陷区域;最后,利用加权马氏距离表示协方差距离,突出缺陷边缘像素特征,使缺陷兴趣区域更加显著,再采用连通区域标记的方式准确识别表面缺陷。实验结果表明,在金属器件镀锌表面缺陷人工智能识别中,该方法可以准确检索到缺陷区域,识别结果的敏感度和特异性较高。由此可以说明,该方法具有良好的应用效果。 展开更多
关键词 OTSU算法 金属器件 镀锌表面 缺陷识别 二阶振荡粒子群优化算法 最优灰度阈值 GABOR小波变换
在线阅读 下载PDF
车网互动充放电站的选址定容规划策略 被引量:1
20
作者 李滨 韦寿浦 +2 位作者 白晓清 陈碧云 阳育德 《电力系统及其自动化学报》 北大核心 2025年第2期38-47,57,共11页
为解决车网互动(vehicle-to-grid,V2G)充放电站的选址定容规划问题,基于电动汽车的时空特性,将V2G充放电站的规划与配电网调度相结合,建立V2G充放电站选址定容双层规划模型。上层模型利用现有充电桩升级改造和V2G对线路负载的影响,从电... 为解决车网互动(vehicle-to-grid,V2G)充放电站的选址定容规划问题,基于电动汽车的时空特性,将V2G充放电站的规划与配电网调度相结合,建立V2G充放电站选址定容双层规划模型。上层模型利用现有充电桩升级改造和V2G对线路负载的影响,从电网投资和运行的经济性角度对充放电站进行优化选址;下层构建多目标优化调度模型以实现电动汽车充放电优化调度,并将最优调度情况返回给上层实现优化定容。最后利用双层迭代混合粒子群算法求解。IEEE 33节点算例结果验证了所提规划策略的有效性。 展开更多
关键词 电动汽车(EV) 充放电站规划 双层规划 充放电优化 粒子群优化算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部