Preparation of highly active hydrodesulfurization catalysts is extremely meaningful for the sulfur removal from thiophene substances.In this work,commercial nano-Al_(2)O_(3)with mesoporous structure supported monometa...Preparation of highly active hydrodesulfurization catalysts is extremely meaningful for the sulfur removal from thiophene substances.In this work,commercial nano-Al_(2)O_(3)with mesoporous structure supported monometallic phosphide(NiP/Al_(2)O_(3)and MoP/Al_(2)O_(3))and bimetallic phosphide(NiMoP/Al_(2)O_(3)with various Ni/Mo molar ratio)catalysts are successfully prepared by temperature-programmed reduction.X-ray diffraction(XRD)result shows the Ni/Mo molar ratio affect the crystal phase in catalysts.Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)characterizations co-confirm the interact between Ni and Mo elements in bimetallic phosphide.Catalyst evaluation in hydrodesulfurization of dibenzothiophene shows that bimetallic phosphide samples exhibit better catalytic performance than monometallic phosphide.62.1%conversion and 86.3%biphenyl selectivity with 30 h stability are achieved over NiMoP/Al_(2)O_(3)(Ni/Mo=1∶1)catalyst at 400℃under 3 MPa H_(2).All characterization results demonstrate that the improved activity of bimetallic phosphide owes to the Ni-Mo synergistic effect in NiMoP/Al_(2)O_(3)(Ni/Mo=1∶1)catalyst.This finding provides a guide to the design of bimetallic catalyst with synergistic effect.展开更多
In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic ac...In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic acid)ligand.Mg_(2)Ti-ABTC exhibited permanent porosity for N_(2),CO_(2),CH_(4),C_(2)H_(2),C_(2)H_(4),and C_(2)H_(6)gas adsorption.Further-more,Mg_(2)Ti-ABTC exhibited outstanding photocatalytic activity in the oxidation of aromatic sulfides to the corre-sponding sulfoxides under ambient air conditions.Mechanism studies reveal that photoinduced holes(h^(+)),the super-oxide radical(·O_(2)^(-)),and singlet oxygen(^(1)O_(2))are pivotal species involved in the photocatalytic oxidation reaction.展开更多
Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was con...Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was constructed by an active dicyandiamide(DCA)linker,Mn^(2+),Co^(2+)centers,and an 1-ethylimidazole(EIM)ligand.1 possesses good thermal stability(Tp=205℃),high energy density(Eg=24.34 kJ/g,Ev=35.93 kJ/cm^(3)),and insensitivity to impact and frictional stimulus.The catalytic effects of 1 contrasted to monometallic coordination compounds Mn(EIM)_(4)(DCA)_(2)(2)and Co(EIM)_(4)(DCA)_(2)(3)on the thermal decomposition of AP/RDX composite were investigated by a DSC method.The decomposition peak temperatures of AP and RDX of the composite decreased to 335.8℃ and 206.4℃,respectively,and the corresponding activation energy decreased by 27.3%and 43.6%,respectively,which are better than the performances of monometallic complexes 2 and 3.The gas products in the whole thermal decomposition stage of the sample were measured by TG-MS and TG-IR,and the catalytic mechanism of 1 to AP/RDX was further analyzed.This work reveal potential application of bimetallic MOFs in the composite solid propellants.展开更多
Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the pr...Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the practical use of nanothermites. In this work, combustion characteristic and aging behavior of aluminum/iron oxide(Al/Fe2O3) nanothermite mixtures were investigated in the presence of micron-scale nickel aimed to produce bimetal thermite powders. The results showed that the alumina content in the combustion residue increased from 88.3% for Al/Fe2O3 nanothermite to 96.5% for the nanothermite mixture containing 20 wt% nickel. Finer particle sizes of combustion residue were obtained for the nanothermite mixtures containing nickel, indicative of the reduced agglomeration. Both results suggested a more complete combustion in the bimetal thermite powders. Aging behavior of the nanothermite mixture was also assessed by measuring the heat of combustion of the mixture before and after aging process. The reduction in heat of combustion of nanothermite mixtures containing nickel was less severe as compared to a significant decrease for the nanothermite mixture without nickel, indicating better aging resistance of the bimetal thermite powders.展开更多
In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation o...In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.展开更多
Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surf...Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.展开更多
基金supported by National Natural Science Foundation of China(22202093)the Scientific and Technological Innovation Youth Talent Team of Shanxi Province(202204051001005)。
文摘Preparation of highly active hydrodesulfurization catalysts is extremely meaningful for the sulfur removal from thiophene substances.In this work,commercial nano-Al_(2)O_(3)with mesoporous structure supported monometallic phosphide(NiP/Al_(2)O_(3)and MoP/Al_(2)O_(3))and bimetallic phosphide(NiMoP/Al_(2)O_(3)with various Ni/Mo molar ratio)catalysts are successfully prepared by temperature-programmed reduction.X-ray diffraction(XRD)result shows the Ni/Mo molar ratio affect the crystal phase in catalysts.Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)characterizations co-confirm the interact between Ni and Mo elements in bimetallic phosphide.Catalyst evaluation in hydrodesulfurization of dibenzothiophene shows that bimetallic phosphide samples exhibit better catalytic performance than monometallic phosphide.62.1%conversion and 86.3%biphenyl selectivity with 30 h stability are achieved over NiMoP/Al_(2)O_(3)(Ni/Mo=1∶1)catalyst at 400℃under 3 MPa H_(2).All characterization results demonstrate that the improved activity of bimetallic phosphide owes to the Ni-Mo synergistic effect in NiMoP/Al_(2)O_(3)(Ni/Mo=1∶1)catalyst.This finding provides a guide to the design of bimetallic catalyst with synergistic effect.
文摘In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic acid)ligand.Mg_(2)Ti-ABTC exhibited permanent porosity for N_(2),CO_(2),CH_(4),C_(2)H_(2),C_(2)H_(4),and C_(2)H_(6)gas adsorption.Further-more,Mg_(2)Ti-ABTC exhibited outstanding photocatalytic activity in the oxidation of aromatic sulfides to the corre-sponding sulfoxides under ambient air conditions.Mechanism studies reveal that photoinduced holes(h^(+)),the super-oxide radical(·O_(2)^(-)),and singlet oxygen(^(1)O_(2))are pivotal species involved in the photocatalytic oxidation reaction.
基金supported by the National Natural Science Foundation of China(Grant No.22175025)State Key Laboratory of Explosion Science and Safety Protection(Grant No.YBKT22-03)+1 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2023 NSCQ-LZX0098)the Chongqing Municipal Education Commis-sion(Grant No.KJZD-M202301404).
文摘Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was constructed by an active dicyandiamide(DCA)linker,Mn^(2+),Co^(2+)centers,and an 1-ethylimidazole(EIM)ligand.1 possesses good thermal stability(Tp=205℃),high energy density(Eg=24.34 kJ/g,Ev=35.93 kJ/cm^(3)),and insensitivity to impact and frictional stimulus.The catalytic effects of 1 contrasted to monometallic coordination compounds Mn(EIM)_(4)(DCA)_(2)(2)and Co(EIM)_(4)(DCA)_(2)(3)on the thermal decomposition of AP/RDX composite were investigated by a DSC method.The decomposition peak temperatures of AP and RDX of the composite decreased to 335.8℃ and 206.4℃,respectively,and the corresponding activation energy decreased by 27.3%and 43.6%,respectively,which are better than the performances of monometallic complexes 2 and 3.The gas products in the whole thermal decomposition stage of the sample were measured by TG-MS and TG-IR,and the catalytic mechanism of 1 to AP/RDX was further analyzed.This work reveal potential application of bimetallic MOFs in the composite solid propellants.
文摘Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the practical use of nanothermites. In this work, combustion characteristic and aging behavior of aluminum/iron oxide(Al/Fe2O3) nanothermite mixtures were investigated in the presence of micron-scale nickel aimed to produce bimetal thermite powders. The results showed that the alumina content in the combustion residue increased from 88.3% for Al/Fe2O3 nanothermite to 96.5% for the nanothermite mixture containing 20 wt% nickel. Finer particle sizes of combustion residue were obtained for the nanothermite mixtures containing nickel, indicative of the reduced agglomeration. Both results suggested a more complete combustion in the bimetal thermite powders. Aging behavior of the nanothermite mixture was also assessed by measuring the heat of combustion of the mixture before and after aging process. The reduction in heat of combustion of nanothermite mixtures containing nickel was less severe as compared to a significant decrease for the nanothermite mixture without nickel, indicating better aging resistance of the bimetal thermite powders.
文摘In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.
基金supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+2 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi Province Intelligent Optoelectronic Sensing Application Technology Innovation CenterShanxi Province Optoelectronic Information Science and Technology Laboratory,Yuncheng University。
文摘Metal nanoparticles with high surface area and high electrochemical activity exhibit excellent catalytic performance in the photocatalytic reduction of carbon dioxide(CO_(2)).However,poor stability,small specific surface area,and less active sites limits its solar energy utilization.Hydrothermal method was utilized to synthesize the bimetallic material of Cu_(x)Co_(1-x)in this work.Co was loaded onto the Cu surface due to the electrons generated by the surface plasmon resonance(SPR)effect occurring on the Cu surface.Cu_(x)Co_(1-x)exhibits high photocatalytic conversion of CO_(2)efficiency under irradiation,which mainly because the Co nanoparticles on the surface of Cu can be used as cocatalysts to enhance the photocharge transfer.Cu_(0.6)Co_(0.4)exhibits the comparatively best photocatalytic conversion efficiency of CO_(2)in the first 6 h light irradiation.The yields of CO and CH_(4)reached 35.26 and 2.71μmol/(g·h),respectively.Upon illumination,electrons were produced,with the majority of them moving towards the interface.This movement contributes to the increased lifetime of photogenerated electron-hole pairs,which in turn boosts the photocatalytic efficiency.The findings of this research provide significant insights for creating photocatalysts that are both highly effective and stable in CO_(2)reduction processes.