期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多层聚焦Inception-V3卷积网络的细粒度图像分类
被引量:
9
1
作者
王波
黄冕
+2 位作者
刘利军
黄青松
单文琦
《电子学报》
EI
CAS
CSCD
北大核心
2022年第1期72-78,共7页
细粒度图片具有结构多变、背景干扰大、类间差异小、类内差异大等特点,准确地定位与提取判别性局部特征至关重要.本文提出一种多层聚焦卷积网络,通过首层聚焦网络能够准确、有效地聚焦于识别局域并生成定位区域,根据定位区域对原图像分...
细粒度图片具有结构多变、背景干扰大、类间差异小、类内差异大等特点,准确地定位与提取判别性局部特征至关重要.本文提出一种多层聚焦卷积网络,通过首层聚焦网络能够准确、有效地聚焦于识别局域并生成定位区域,根据定位区域对原图像分别进行裁剪和遮挡后输入下一层的聚焦网络进行训练分类.其中单层聚焦网络以In⁃ception-V3网络为基础,通过卷积块特征注意力模块和定位区域选择机制来聚焦有效的定位区域;使用双线性注意力最大池化提取各个局部的特征;最后进行分类预测.本文在3个常用的细粒度数据集CUB-2011、FGVC-Aircraft以及Stanford Cars上进行了实验验证,分别获得了89.7%、93.6%和95.1%的Top-1准确率.实验结果表明,本模型的分类准确率高于目前主流方法.
展开更多
关键词
多层聚焦卷积网络
Inception-V3网络
注意力机制
双线性注意力最大池化
在线阅读
下载PDF
职称材料
题名
基于多层聚焦Inception-V3卷积网络的细粒度图像分类
被引量:
9
1
作者
王波
黄冕
刘利军
黄青松
单文琦
机构
昆明理工大学信息工程与自动化学院
云南国土资源职业学院信息中心
云南大学信息学院
云南省计算机技术应用重点实验室
出处
《电子学报》
EI
CAS
CSCD
北大核心
2022年第1期72-78,共7页
基金
国家自然科学基金(No.81860318,No.81560296)
云南省计算机技术应用重点实验室开放基金(No.2020106)。
文摘
细粒度图片具有结构多变、背景干扰大、类间差异小、类内差异大等特点,准确地定位与提取判别性局部特征至关重要.本文提出一种多层聚焦卷积网络,通过首层聚焦网络能够准确、有效地聚焦于识别局域并生成定位区域,根据定位区域对原图像分别进行裁剪和遮挡后输入下一层的聚焦网络进行训练分类.其中单层聚焦网络以In⁃ception-V3网络为基础,通过卷积块特征注意力模块和定位区域选择机制来聚焦有效的定位区域;使用双线性注意力最大池化提取各个局部的特征;最后进行分类预测.本文在3个常用的细粒度数据集CUB-2011、FGVC-Aircraft以及Stanford Cars上进行了实验验证,分别获得了89.7%、93.6%和95.1%的Top-1准确率.实验结果表明,本模型的分类准确率高于目前主流方法.
关键词
多层聚焦卷积网络
Inception-V3网络
注意力机制
双线性注意力最大池化
Keywords
multilayer focused convolution network
inception-V3
attention
mechanism
bilinear attention maxi⁃mum pooling
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多层聚焦Inception-V3卷积网络的细粒度图像分类
王波
黄冕
刘利军
黄青松
单文琦
《电子学报》
EI
CAS
CSCD
北大核心
2022
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部