期刊文献+
共找到241篇文章
< 1 2 13 >
每页显示 20 50 100
一种基于元学习的改进YOLO钢管表面缺陷小样本检测模型 被引量:3
1
作者 李凌波 田彦 +1 位作者 江旭东 董宝力 《机电工程》 北大核心 2025年第5期985-993,共9页
针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取... 针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取了特征图的判别能力;然后,为了提高特征融合能力并降低计算复杂度,通过加权双向特征金字塔网络(BiFPN)结构优化了特征提取器的颈部网络,平衡了YOLO-SBN模型的有效性和效率;最后,采用归一化注意力模块(NAM)优化权重调整了模块,增强了浅层缺陷特征的模型表达,并基于这些增强的特征进行了检测;使用金属表面热轧缺陷公开数据集NEU-DET验证了YOLO-SBN模型的算法性能。研究结果表明:对于小样本缺陷检测,YOLO-SBN模型在平均准确率(mAP)方面提高了4.1%;在新类缺陷样本规模数量为50的小样本情况下,改进后的检测模型对新类数据适应性最强。由此可见,该YOLO-SBN模型在提高检测精度和提升模型泛化能力方面具有一定优势。 展开更多
关键词 小样本目标检测 表面缺陷 元学习 特征网络 归一化注意力模块 平均准确率 双向特征金字塔网络(BiFPN)
在线阅读 下载PDF
多尺度和多层级特征融合的人体姿态估计 被引量:2
2
作者 王燕妮 胡敏 +2 位作者 韩世鹏 陈艺瑄 吕昊 《计算机工程与应用》 北大核心 2025年第6期199-209,共11页
人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(m... 人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(multi-scale and multi-level network,MSLNet)。采用高分辨率网络(high-resolution network,HRNet)作为主干,通过跨尺度信息交互,实现不同分辨率特征图之间的信息交换,获取同时包含细粒度和粗粒度的姿态特征;引入期望最大化注意力-加权双向特征金字塔网络(expectation maximization attention-bidirectional feature pyramid network,EMA-BiFPN),实现多尺度特征融合后的多层级特征聚合,从局部到全局捕捉人体姿态的细节和关联信息;设计由残差结构组成的关键点检测头,完成输出特征的最终融合并提升人体关键点检测准确率。实验结果表明,MSLNet在COCO和MPII数据集上分别取得了75.8%和91.1%的准确率,实现了最优精度,充分验证了MSLNet能够融合尺度和层级之间的互补特征,进而提升人体姿态估计精度。 展开更多
关键词 高分辨率网络(HRNet) 人体姿态估计 期望最大化注意力 双向特征金字塔网络 特征融合
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
3
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于特征工程与仿生优化算法构建河流溶解氧预测模型 被引量:1
4
作者 李鹏程 苏永军 +1 位作者 王钰 贾悦 《中国农村水利水电》 北大核心 2025年第2期37-44,共8页
河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内... 河流水体中溶解氧骤增或耗竭均会引发系列环境污染、物种多样性破坏等问题,准确预测河流溶解氧(DO)浓度对河流水环境治理具有重要意义。为提高模型输入特征的可解释性及模型精度,获取河流DO浓度最优预测模型,研究利用黄河流域山西境内水质监测站点数据,以双向长短期记忆网络(BiLSTM)为基础,结合卷积神经网络模型(CNN)和注意力机制(Attention Mechanism),基于随机森林模型(RF)进行特征优选,建立RF-CNN-BiLSTM-Attention(RF-CBA)模型,进一步利用吸血水蛭优化算法(BSLO)、黑翅鸢优化算法(BKA)、白鲨优化算法(WSO)等仿生优化算法,构建了BSLO-RF-CBA、BKA-RF-CBA、WSO-RF-CBA共3种优化模型,并与深度学习中CNN-A、LSTM-A、BiLSTM-A、CBA、RF-CBA模型对比,分析得到河流溶解氧预测结果,以平均绝对误差(MAE)、均方根误差(RMSE)、均方误差(MSE)、决定系数(R2)、全绩效指标(GPI)和相对误差(MAPE)评价不同模型精度,结果表明:(1)RF模型通过对影响河流DO特征值进行排序、筛选,可消除冗余特征对水质预测模型的影响,提高预测精度。(2)利用仿生算法优化RF-CBA模型的神经元数量、学习率、正则化系数等参数,模型模拟精度进一步提升,总体上捕捉到了DO波动的时间序列特征,模型表现出强稳定性和泛化能力。(3)BSLO-RF-CBA模型模拟精度最高,对DO变化捕捉能力突出,具有更强的捕获全局依赖关系的能力,推荐用于河流溶解氧预测模型。该模型具备扩展至不同河流溶解氧等污染物浓度预测的能力,为河流水体污染预警与系统化管理提供技术支撑。 展开更多
关键词 溶解氧 双向长短期记忆网络机 特征优选 仿生优化算法 耦合模型
在线阅读 下载PDF
基于改进YOLOv8的路面病害检测模型
5
作者 侯勇严 梁扩旺 +3 位作者 郭文强 郝磊 郭志高 董白杨 《陕西科技大学学报》 北大核心 2025年第3期166-173,共8页
针对现有路面病害检测模型存在特征提取能力弱、特征融合能力不足、未能有效平衡检测精度与轻量化等问题,提出了一种利用通道先验卷积注意力(CPCA)机制和双向特征金字塔网络(BiFPN)改进YOLOv8的路面病害检测模型--YOLOv8n-CB.在YOLOv8n... 针对现有路面病害检测模型存在特征提取能力弱、特征融合能力不足、未能有效平衡检测精度与轻量化等问题,提出了一种利用通道先验卷积注意力(CPCA)机制和双向特征金字塔网络(BiFPN)改进YOLOv8的路面病害检测模型--YOLOv8n-CB.在YOLOv8n的主干网络引入CPCA机制,动态调整通道和空间维度上的注意力权重,增强对小目标的特征提取能力,提高模型的检测精度;其次,将颈部网络替换为加权BiFPN,通过新增加权跳跃连接机制,在实现模型轻量化的同时,提高对小目标的特征融合能力.在China_Mix路面病害数据集上的实验结果表明,改进后的模型mAP@0.5、mAP@[0.5-0.9]与原始模型相比可分别提升1%与2.90%,F1-score提升2%,并且参数量降低29.33%,浮点数运算次数也降低了9.88%.通过与其他YOLO模型的实验对比,本模型的有效性和优越性得到了进一步的验证,为公路综合运输安全风险防控智能化提供了技术支持. 展开更多
关键词 路面病害 YOLO 注意力机制 双向特征金字塔
在线阅读 下载PDF
基于融合特征和OOA-BiGRU的锂离子电池剩余使用寿命预测方法 被引量:1
6
作者 孙静 翟千淳 《电工技术学报》 北大核心 2025年第9期2996-3012,共17页
随着新能源汽车产业的持续发展,锂离子电池被大量用作车载动力电池。电池管理系统(BMS)负责监测、评估、维护和优化锂离子电池的性能和寿命,其中剩余使用寿命(RUL)预测是BMS中的重要组成部分。该文提出一种基于融合特征和鱼鹰优化算法(O... 随着新能源汽车产业的持续发展,锂离子电池被大量用作车载动力电池。电池管理系统(BMS)负责监测、评估、维护和优化锂离子电池的性能和寿命,其中剩余使用寿命(RUL)预测是BMS中的重要组成部分。该文提出一种基于融合特征和鱼鹰优化算法(OOA)优化双向门控循环单元(BiGRU)网络的锂离子电池RUL预测方法。针对电池容量难以直接测量的问题,采集电池老化过程中简单易测量的电流、电压和时间数据,从中提取能反映电池老化趋势的健康因子。提出一种结合过滤器与包装器的融合特征筛选策略,降低模型的复杂度,防止模型过拟合。搭建BiGRU网络,深入地研究序列整体结构和动态特性,整合多维度特征,适应不同时间尺度的依赖关系。采用OOA对BiGRU模型内部的超参数进行有效的优化,提高了模型的预测精度,同时实现了参数的自配置。将所提方法与传统网络模型在不同电池数据上进行比对,验证所提OOA-BiGRU模型的可靠性。另外,将提出的融合特征预测与全部特征预测和过滤特征预测的效果进行比较,证明融合特征可更好地表示电池的老化程度,提高模型预测的准确度。 展开更多
关键词 锂离子电池 剩余使用寿命 双向门控循环单元 健康因子 融合特征
在线阅读 下载PDF
基于时序聚合异构图的高价值专利识别方法 被引量:1
7
作者 邓娜 喻卓群 +3 位作者 孙俊杰 陈旭 刘树栋 孙湘怡 《情报杂志》 北大核心 2025年第6期127-137,共11页
[研究目的]提出一种基于时序聚合异构图的高价值专利识别模型,旨在解决现有高价值专利识别方法在利用专利异构关联和时序特征方面不足的问题,以更精确地识别高价值专利。[研究方法]通过整合专利多模态信息并设计时序-引用影响力动态更... [研究目的]提出一种基于时序聚合异构图的高价值专利识别模型,旨在解决现有高价值专利识别方法在利用专利异构关联和时序特征方面不足的问题,以更精确地识别高价值专利。[研究方法]通过整合专利多模态信息并设计时序-引用影响力动态更新机制,生成反映专利价值变化的时序聚合异构图。构建融入双向注意力机制的异构图卷积网络模型,提高对专利异构特征的提取能力,实现对高价值专利的精确识别。[研究结果/结论]实验表明,该文方法在智能电网领域的专利数据集上准确率和F1值分别达到84.61%和84.59%,优于常规方法,验证了方法的有效性,为专利筛选和价值评估提供了新的视角和方法。 展开更多
关键词 高价值专利识别 异构图卷积网络 双向注意力机制 动态更新机制 多维特征
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
8
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
在线阅读 下载PDF
面向复杂战场环境下的长期目标跟踪方法
9
作者 张雷 何舒文 +2 位作者 段晶晶 马增琛 张建伟 《火力与指挥控制》 北大核心 2025年第9期45-53,共9页
针对未来智能化武器装备面向复杂战场环境下的作战需求,设计了一种鲁棒的长期目标跟踪方法。面对高对抗性、高不确定性、高动态性和强实时性的战场环境,以孪生网络跟踪器为基准跟踪框架,建立目标跟踪正确性判断机制,融合双向特征金字塔... 针对未来智能化武器装备面向复杂战场环境下的作战需求,设计了一种鲁棒的长期目标跟踪方法。面对高对抗性、高不确定性、高动态性和强实时性的战场环境,以孪生网络跟踪器为基准跟踪框架,建立目标跟踪正确性判断机制,融合双向特征金字塔框架与重检测机制,构建目标跟踪方法架构,从而实现复杂环境下的长期目标跟踪。实验结果表明,提出的方法相对于基准跟踪方法的平均距离精度提高了6.9%,从而确保作战任务高效、可靠地完成。 展开更多
关键词 复杂战场环境 长期目标跟踪 孪生网络跟踪器 双向特征金字塔 重检测机制
在线阅读 下载PDF
基于改进YOLOv5的小目标交通标志检测算法
10
作者 李牧 陶启婷 柯熙政 《计算机应用》 北大核心 2025年第S1期239-244,共6页
交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法... 交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法。首先,引入空间到深度卷积(SPD-Conv)对特征图进行下采样,有效避免小目标信息丢失,提高小目标敏感度。其次,基于加权双向特征金字塔网络(BiFPN)改进颈部网络,添加跨层连接以融合多尺度特征。之后,增加小目标检测层,增强小目标检测能力。最后,采用SIoU(Shape-aware Intersection over Union)损失函数,关注真实框与预测框的角度信息。实验结果表明,改进后的算法在中国交通标志检测数据集(CCTSDB2021)上的平均精度均值(mAP)达到83.5%,相较于原YOLOv5提升了7.2个百分点,检测速度满足实时性要求。 展开更多
关键词 小目标检测 YOLOv5 交通标志检测 SPD-Conv BiFPN
在线阅读 下载PDF
基于改进YOLOX的隧道火灾检测算法
11
作者 马庆禄 邱高建 白锋 《中国安全科学学报》 北大核心 2025年第4期28-34,共7页
针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字... 针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字塔网络(BiFPN)增强特征提取和融合能力,优化α-交并比(IoU)损失函数,以提高对轮廓特征不明显的隧道初期烟雾火焰的检测精度;在现有公开数据集不足的情况下,通过网络采集、模拟试验和扩充现有数据集,构建隧道火灾数据集,在包含真实场景和模拟场景的自建隧道火灾数据集上进行验证。结果表明:相比于原始YOLOX模型,改进后的算法均值平均精度(mAP@0.5)提高1.89%,mAP@0.5~0.95提高0.88%,精确率提高4.57%,召回率提高5.45%,改进后的算法能够实现更优的检测性能。 展开更多
关键词 隧道火灾 YOLOX 火灾检测 归一化注意力模块(NAM) 加权双向特征金字塔网络(BiFPN)
在线阅读 下载PDF
滚动轴承的退化特征信息融合与剩余寿命预测
12
作者 张建宇 王留震 +1 位作者 肖勇 马雅楠 《中国机械工程》 北大核心 2025年第7期1553-1561,共9页
针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融... 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。 展开更多
关键词 稀疏自编码器特征融合 双向长短期记忆网络预测模型 滚动轴承 反双曲特征指标 频域谐波退化因子
在线阅读 下载PDF
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:3
13
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-Pose GhostNetV2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
露天矿山下无人矿卡的轻量级障碍检测算法 被引量:1
14
作者 程铄棋 伊力哈木·亚尔买买提 +2 位作者 谢丽蓉 李熙玉 马颖 《煤炭科学技术》 北大核心 2025年第7期262-274,共13页
随着人工智能技术不断发展和智慧矿山理念的逐步推进,传统露天矿山的运营模式正在被自动化方式取代。无人矿卡作为智慧矿山的重要组成部分,其推广应用有效解决了因矿区地形不规则、路面坑洼或恶劣天气等因素导致的矿卡翻车、侧滑等问题... 随着人工智能技术不断发展和智慧矿山理念的逐步推进,传统露天矿山的运营模式正在被自动化方式取代。无人矿卡作为智慧矿山的重要组成部分,其推广应用有效解决了因矿区地形不规则、路面坑洼或恶劣天气等因素导致的矿卡翻车、侧滑等问题,从而显著降低了由此引发的伤亡事故。准确的检测目标类别是做避障决策的前提,而模型轻量化可以在资源有限的条件下很好地部署。因此,针对露天矿山场景下,无人矿卡目标检测算法存在参数量多、模型较大及小目标和遮挡目标检测准确率低的问题,提出轻量级无人矿卡检测算法LWHP(Lightweight High-Precision),设计思路有以下4点:其一,提出高效加权双向的特征金字塔网络R-BiFPN,利用这一结构重构颈部网络,通过跨层连接及双向传播,减少冗余计算路径,并通过加权特征融合方式增强多尺度特征融合能力,提升小目标检测能力的同时大幅度降低参数量;其二,设计带有多头注意力机制的检测解耦头,改善卷积层冗余导致网络复杂的问题,并处理空间维度以集中捕捉目标特征,减弱无关背景干扰,提升遮挡目标识别准确率;其三,利用双重卷积构建轻量级神经网络CDC,增强通道间信息流动,提高模型特征表达能力并降低模型复杂度;其四,引入EIOU损失函数,分别计算目标边界框的宽高差异,并加入Focal Loss解决难易样本不平衡问题,获得更快的收敛速度和更优秀的定位能力。试验表明:改进后算法相较于原始算法参数量降低50.2%,计算量减少46.3%,模型大小压缩47.6%,仅有3.3 MB,且FPS达到92.9,满足实时性需求。精度提升1.6%,召回率提升3.1%,平均精度达到79.6%,相比原模型提升2%,保证轻量级部署的同时提升了检测准确率。 展开更多
关键词 无人矿卡 目标检测 LWHP 轻量化 加权双向特征金字塔网络 多头注意力机制
在线阅读 下载PDF
一种融合时空特征的物联网入侵检测方法 被引量:1
15
作者 翁铜铜 矫桂娥 张文俊 《信息安全研究》 北大核心 2025年第3期241-248,共8页
针对不平衡的物联网流量数据集中攻击样本不足且类别较多降低了检测模型的分类准确率和泛化能力等问题,提出一种融合时空特征的物联网入侵检测方法(BGAREU).首先对数据进行规范化处理,并采用SMOTEENN方法改善训练样本的数据分布;然后通... 针对不平衡的物联网流量数据集中攻击样本不足且类别较多降低了检测模型的分类准确率和泛化能力等问题,提出一种融合时空特征的物联网入侵检测方法(BGAREU).首先对数据进行规范化处理,并采用SMOTEENN方法改善训练样本的数据分布;然后通过双向门控循环单元(BiGRU)和多头注意力(multi-head attention)提取时序特征和全局信息,并结合ResNext网络和U-Net网络构建多尺度的空间特征提取网络,再将高效通道注意力(ECA-Net)加入残差单元中以增强局部表征能力;最后将融合的特征输入Softmax分类器进行多分类.实验表明,在物联网流量数据集UNSW-NB15,NSL-KDD,WSN-DS上与其他模型相比,该模型在各项指标上均有2%以上的提升.此外,还通过对比多种注意力机制验证了ECA-Net具有更强的表征能力,并探索了多头注意力中不同数量的注意力头对模型性能的影响. 展开更多
关键词 入侵检测 双向门控循环单元 多头注意力 多尺度特征提取 高效通道注意力
在线阅读 下载PDF
基于大模型的钻井现场人体姿态估计方法研究 被引量:1
16
作者 刘兆年 连远锋 +2 位作者 师印亮 王宁 姜彬 《钻采工艺》 北大核心 2025年第1期104-112,共9页
准确的人体姿态估计对钻井现场员工行为的监测和安全预警至关重要。针对钻井平台现场监控视频中存在高反光、高模糊和遮挡问题,提出一种基于双向特征融合的人体姿态估计模型,通过构建一种高效的双向特征融合机制,在ViT预训练模型的基础... 准确的人体姿态估计对钻井现场员工行为的监测和安全预警至关重要。针对钻井平台现场监控视频中存在高反光、高模糊和遮挡问题,提出一种基于双向特征融合的人体姿态估计模型,通过构建一种高效的双向特征融合机制,在ViT预训练模型的基础上引入空洞金字塔池化技术捕捉的图像多尺度空间特征。该机制可同时关注ViT预训练模型内部特征、多尺度空间特征以及两者间的交互特征,实现多类特征的高效集成。实验结果表明,通过与基准模型HRNet的对比,文章方法在KAP和KAR上分别实现了3.6%和4.1%的显著提升。同时,在南海某平台的智能监控系统中对所提出的模型进行应用测试,仍然显示出较高的准确性,为后续深入研究员工不安全行为的智能分析提供了精确的动作估计基础。 展开更多
关键词 人体姿态估计 预训练大模型 空洞金字塔池化 双向特征融合
在线阅读 下载PDF
RO-YOLOv9车辆行人检测算法 被引量:2
17
作者 廖炎华 万学俊 +1 位作者 赵周洲 潘文林 《计算机工程与应用》 北大核心 2025年第11期144-155,共12页
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a... 针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv9 小目标检测 双向与自适应尺度融合特征金字塔网络(BiASF-FPN) OR-RepN4 Shape-NWD
在线阅读 下载PDF
基于双向约束蒸馏的无监督图像异常检测
18
作者 李波 李泽超 +1 位作者 邢鹏 唐金辉 《电子学报》 北大核心 2025年第3期895-909,共15页
异常检测是一项重要的计算机视觉任务,它的目标是检测异常样本同时定位异常区域.近期,主流的无监督异常检测方案通常基于蒸馏方法和重构方法 .然而,它们仍存在相似的局限.在基于蒸馏方法的异常检测中,学生网络通常能学习到教师网络相似... 异常检测是一项重要的计算机视觉任务,它的目标是检测异常样本同时定位异常区域.近期,主流的无监督异常检测方案通常基于蒸馏方法和重构方法 .然而,它们仍存在相似的局限.在基于蒸馏方法的异常检测中,学生网络通常能学习到教师网络相似的表征能力,无法针对某些异常区域产生与教师网络有明显差异的表征.在重构模型中,编码-解码结构容易学习到简单的复原捷径,导致复原图像与输入相似,无法有效地检测异常.为了解决上述挑战,本文提出基于双向约束蒸馏的无监督图像异常检测方法 N-Net,它通过双向蒸馏模块和多级过滤模块缓解了上述局限.具体地,在教师学生网络中,本文首先提出蒸馏适应域特征而非原始域特征,它通过双向蒸馏分支保证了正常适应域特征的高效对齐.然后,本文提出多级过滤模块,通过查询和压缩的方式过滤异常特征,进一步增强学习正常语义特征分布的能力,提升异常检测性能.最后,本文在两个基准异常检测数据集MVTec和VisA上进行了大量实验,结果表明所提方法在异常检测和定位任务上取得了先进的性能. 展开更多
关键词 异常检测 双向蒸馏 特征映射 多级过滤 特征压缩
在线阅读 下载PDF
基于单张量辐射场的数字服装重照明方法
19
作者 陈鑫磊 郑军红 +1 位作者 金耀 何利力 《丝绸》 CAS 北大核心 2025年第1期85-93,共9页
针对现有基于三维表面重建的图像重照明方法存在纹理噪点、重照明质量不足及特征空间利用率低等问题,文章提出一种基于单张量辐射场的数字服装重照明方法。该方法首先利用球面高斯函数和多层感知机,分别模拟环境直射光和服装表面间的间... 针对现有基于三维表面重建的图像重照明方法存在纹理噪点、重照明质量不足及特征空间利用率低等问题,文章提出一种基于单张量辐射场的数字服装重照明方法。该方法首先利用球面高斯函数和多层感知机,分别模拟环境直射光和服装表面间的间接反射光,以构建一个精准的入射光场;接着通过引入梯度引导平滑策略,优化从特征空间中提取双向反射分布函数模型参数的过程。最后,利用简化的反射率方程,结合入射光场、双向反射分布模型及特征空间,成功地渲染出高质量的服装重照明图像。实验结果表明,该方法有效地减少了服装纹理噪点,显著降低了服装重照明的失真现象。相较于先进方法,该方法在生成服装新视角图像方面,各项评估指标的平均提升约9.922%;在服装重照明结果方面,各项评估指标的平均提升约4.549%。 展开更多
关键词 单张量辐射场 特征空间 服装重照明 3D维重建 图像生成 双向反射分布函数
在线阅读 下载PDF
融合注意力与多尺度特征的遥感图像配准 被引量:3
20
作者 倪力政 陈颖 +2 位作者 李翔 邓修涵 马腾 《计算机工程与应用》 北大核心 2025年第3期275-285,共11页
针对遥感图像地理信息复杂多变、局部细节与上下文信息难以被充分提取,以及部分配准模型精度较低、用时较长等问题,提出了一种融合注意力与多阶尺度特征的配准模型,在特征提取阶段引入Transformer与逆残差结构结合的轻量级卷积网络,通... 针对遥感图像地理信息复杂多变、局部细节与上下文信息难以被充分提取,以及部分配准模型精度较低、用时较长等问题,提出了一种融合注意力与多阶尺度特征的配准模型,在特征提取阶段引入Transformer与逆残差结构结合的轻量级卷积网络,通过嵌入混合注意力块加深对通道空间信息的关注,进一步地,为了更有效地捕获上下文特征信息,使用增强注意力的多尺度扩张卷积模块进行深层次过滤提取,以获取更精细和丰富的特征语义图。在匹配阶段采用互相关最优加权的双向匹配方法,计算密集对应关系得到双向参数,并通过参数回归网络加权合成最终变换参数,仿射变换完成图像配准。实验结果表明,关键点正确估计的比例系数为0.03、0.05和0.1的情况下,在三个数据集上的配准精度达到61.9%、86.2%、93.6%,而平均配准时间仅为1.05 s,证明了该模型有效提升遥感图像配准的精度和效率。 展开更多
关键词 遥感图像配准 上下文特征 增强注意力 双向匹配
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部