期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
1
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于WOA-CNN-BiGRU的PEMFC性能衰退预测
2
作者 陈贵升 刘强 许杨松 《电源技术》 北大核心 2025年第4期831-840,共10页
针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影... 针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影响显著的特征,以降低计算复杂度。然后,结合CNN的特征提取能力和BiGRU在处理双向时间依赖性数据上的优势建立CNNBiGRU模型,并通过WOA优化其超参数进一步提升预测的准确性。最后,与传统预测模型进行对比,验证所建模型的优越性。实验结果表明:在训练集占比为60%时,模型在三种不同工况PEMFC老化数据集上的RMSE分别为0.0017、0.0014和0.0110,证明CNN-BiGRU模型具有较高的预测精度以及良好的泛化能力。 展开更多
关键词 PEMFC 性能衰退 鲸鱼优化算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于深度学习和注意力机制的漏钢预报研究 被引量:1
3
作者 吴恒 张本国 +2 位作者 余浩辰 张瑞忠 范利锋 《冶金能源》 北大核心 2025年第3期61-66,共6页
为提高漏钢预报系统准确度,分析了热电偶的单偶时间序列特征与组偶空间联动特征,采用CNN对数据进行特征提取,再将时间序列温度特征作为BIGRU输入,构建CNN-BIGRU网络,并在输出端前引入MA机制。针对CNN-BIGRU网络易陷入局部最优解问题,利... 为提高漏钢预报系统准确度,分析了热电偶的单偶时间序列特征与组偶空间联动特征,采用CNN对数据进行特征提取,再将时间序列温度特征作为BIGRU输入,构建CNN-BIGRU网络,并在输出端前引入MA机制。针对CNN-BIGRU网络易陷入局部最优解问题,利用BO算法寻找CNN-BIGRU网络最优超参数组合,建立了BO-CNN-BIGRU-MA网络模型,并将其应用到连铸漏钢预报系统。结合实际连铸生产数据,对该漏钢预报模型进行测试。结果表明,该连铸漏钢预报系统的准确率为99.5%,报出率达到100%。 展开更多
关键词 漏钢预报 卷积神经网络 双向门控循环单元网络 贝叶斯优化 多头自注意力机制
在线阅读 下载PDF
编码器-解码器结构的刀具磨损状态预测研究
4
作者 刘本刚 吴文江 +2 位作者 赵丹 王裴岩 彭春杨 《小型微型计算机系统》 北大核心 2025年第6期1530-1536,共7页
针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性... 针对航空钛合金加工中刀具磨损状态监测难题,提出了面向刀具磨损状态预测的编码器-解码器网络结构,构建了Transformer、BiLSTM、BiGRU等72种组合模型,通过在航空钛合金高效加工实测数据样本集上验证发现:以Transformer为编码器的模型性能最优,其中Transformer-BiGRU组合模型F1值达69.61%,显著优于GS-XGBoost(58.01%)、Attention-CNN(57.65%)等方法,研究表明基于编码器-解码器的刀具状态预测模型在航空钛合金复杂切削工况下具有显著优势,未来可通过模型优化和扩充样本数据进一步提升其性能. 展开更多
关键词 编码器-解码器结构 刀具磨损状态预测 TRANSFORMER 双向循环神经网络 航空钛合金高效加工
在线阅读 下载PDF
基于MCNN-MSA-BiGRU的轴承故障诊断
5
作者 王雪纯 李想 杨随先 《科学技术与工程》 北大核心 2025年第11期4534-4542,共9页
针对传统故障诊断模型对特征提取不全面,单一模型稳定性和泛化性差的问题,提出了一种基于多头自注意力机制的多尺度卷积神经网络和双向门控循环单元模型,从空间和时序层面实现特征提取。该模型采用原始一维振动信号作为输入,使用不同尺... 针对传统故障诊断模型对特征提取不全面,单一模型稳定性和泛化性差的问题,提出了一种基于多头自注意力机制的多尺度卷积神经网络和双向门控循环单元模型,从空间和时序层面实现特征提取。该模型采用原始一维振动信号作为输入,使用不同尺寸卷积核的卷积网络捕获多尺度信息。引入多头自注意力机制,根据输入的不同部分动态调整输出权值,忽略冗杂信息并对所提取特征进行加权融合,将融合后的特征输入至BiGRU(bidirectional gated recurrent units)网络,通过双向信息融合机制,对来自过去和未来两个方向的信息进行挖掘,捕捉输入序列不同部分间的依赖关系。最后,通过Softmax分类实现轴承故障诊断。在3种轴承数据集上进行实验验证,结果表明,所提模型性能指标表现优异,具有良好的泛化性和可行性。 展开更多
关键词 故障诊断 卷积神经网络 双向门控循环单元 注意力机制 轴承
在线阅读 下载PDF
基于语义分类的物联网固件中第三方组件识别
6
作者 马峰 于丹 +2 位作者 杨玉丽 马垚 陈永乐 《计算机工程与设计》 北大核心 2025年第1期274-281,共8页
为扩大物联网固件中第三方组件识别范围,从软件供应链层面研究物联网固件安全,提出一种基于语义短文本分类的第三方组件识别方法。通过固件解压提取内部第三方组件和模拟组件运行的方式获取组件语义输出数据,利用Skip-gram将语义输出转... 为扩大物联网固件中第三方组件识别范围,从软件供应链层面研究物联网固件安全,提出一种基于语义短文本分类的第三方组件识别方法。通过固件解压提取内部第三方组件和模拟组件运行的方式获取组件语义输出数据,利用Skip-gram将语义输出转化为词嵌入表示,通过卷积神经网络和双向门控循环单元分别提取语义信息局部特征和全局特征,经过多头注意力机制区分关键语义特征,输入到Softmax分类器中实现可用于识别组件的语义信息分类。通过在10个流行的物联网生产商发布的5453个固件上进行实验,验证了该方法可有效识别第三方组件。 展开更多
关键词 物联网 软件供应链 固件安全 短文本分类 卷积神经网络 双向门控循环单元 多头注意力
在线阅读 下载PDF
ECG-QGAN:基于量子生成对抗网络的心电图生成式信息系统
7
作者 瞿治国 陈韦龙 +2 位作者 孙乐 刘文杰 张彦春 《计算机研究与发展》 北大核心 2025年第7期1622-1638,共17页
据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,E... 据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,ECG)临床数据.作为一门新兴学科,量子计算可通过利用量子叠加和纠缠特性,能够探索更大、更复杂的状态空间,进而有利于生成同临床数据一样的高质量和多样化的ECG数据.为此,提出了一种基于量子生成对抗网络(QGAN)的ECG生成式信息系统,简称ECG-QGAN.其中QGAN由量子双向门控循环单元(quantum bidirectional gated recurrent unit,QBiGRU)和量子卷积神经网络(quantum convolutional neural network,QCNN)组成.该系统利用量子的纠缠特性提高生成能力,以生成与现有临床数据一致的ECG数据,从而可以保留心脏病患者的心跳特征.该系统的生成器和判别器分别采用QBiGRU和QCNN,并应用了基于矩阵乘积状态(matrix product state,MPS)和树形张量网络(tree tensor network,TTN)所设计的变分量子电路(variational quantum circuit,VQC),可以使该系统在较少的量子资源下更高效地捕捉ECG数据信息,生成合格的ECG数据.此外,该系统应用了量子Dropout技术,以避免训练过程中出现过拟合问题.最后,实验结果表明,与其他生成ECG数据的模型相比,ECG-QGAN生成的ECG数据具有更高的平均分类准确率.同时它在量子位数量和电路深度方面对当前噪声较大的中尺度量子(noise intermediate scale quantum,NISQ)计算机是友好的. 展开更多
关键词 生成式信息系统 心电图 量子生成对抗网络 量子双向门控循环单元 量子卷积神经网络
在线阅读 下载PDF
基于强化蜣螂算法优化CNN-BiLSTM的刀具磨损状态监测模型
8
作者 赵文博 黄民 《工具技术》 北大核心 2025年第4期138-143,共6页
针对铣削加工过程中铣刀磨损状态监测准确率较低这一问题,提出一种基于强化蜣螂算法(OTDBO)优化卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)的刀具磨损状态监测模型。对于蜣螂算法自身收敛精度低且易于陷入局部最优解的问题,提出一... 针对铣削加工过程中铣刀磨损状态监测准确率较低这一问题,提出一种基于强化蜣螂算法(OTDBO)优化卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)的刀具磨损状态监测模型。对于蜣螂算法自身收敛精度低且易于陷入局部最优解的问题,提出一种融合鱼鹰优化算法与自适应t分布的OTDBO算法,通过对比蜣螂算法(DBO)、减法优化器算法(SABO)、北方苍鹰算法(NGO)、鲸鱼算法(WOA)、哈里斯鹰优化算法(HHO)、灰狼优化算法(GWO)等几种主流寻优算法,得出OTDBO算法的优越性。再与CNN-BiLSTM模型结合搭建OTDBO-CNN-BiLSTM刀具故障诊断模型。为进一步挖掘故障特征,利用多域分析提取信号中蕴含的深层次故障特征分量,作为OTDBO-CNN-BiLSTM模型的输入量。实验表明,该方法对于刀具磨损值的预测更为准确,与其他模型相比结果更优,证明所提方法的准确性和可行性。 展开更多
关键词 刀具磨损监测 卷积神经网络 双向门控循环神经网络 蜣螂算法
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
9
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于CNN和双向GRU混合孪生网络的语音情感识别方法
10
作者 彭鹏 蔡子婷 +3 位作者 刘雯玲 陈才华 曾维 黄宝来 《计算机应用》 北大核心 2025年第8期2515-2521,共7页
针对现有语音情感识别(SER)模型精度较低、泛化能力较差的问题,提出一种孪生的Multi-scale CNNBiGRU网络。该网络通过引入多尺度特征提取器(MSFE)和多维度注意力(MDA)模块构建孪生网络,并利用样本对的形式增加模型训练量,从而提高模型... 针对现有语音情感识别(SER)模型精度较低、泛化能力较差的问题,提出一种孪生的Multi-scale CNNBiGRU网络。该网络通过引入多尺度特征提取器(MSFE)和多维度注意力(MDA)模块构建孪生网络,并利用样本对的形式增加模型训练量,从而提高模型的识别精度,使它能更好地适应复杂的真实应用场景。在IEMOCAP和EMODB这2个公开数据集上的实验结果表明,所提模型在识别精确率上较CNN-BiGRU分别提升了8.28和7.79个百分点。此外,通过收集客服真实语音对话录音构建一个客服语音情感数据集,在该数据集上的实验结果表明,所提模型的识别精确率可达到87.85%,证明所提模型具有良好的泛化性。 展开更多
关键词 语音情感识别 卷积神经网络 双向GRU 混合孪生网络 深度学习
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
11
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于骨骼数据和双流网络的跌倒检测方法
12
作者 王琰 王玫 +1 位作者 刘鑫 阚瑞祥 《桂林理工大学学报》 北大核心 2025年第1期120-126,共7页
针对老年人因摔倒后救助不及时而造成伤亡、给家庭和社会带来了严重负担,而及时发现老年人摔倒并通知其子女或者帮助其呼叫救助成为当前越来越迫切的需求的现状,以Kinect v2信息采集系统为平台,提出了一种基于特征融合与注意力机制优化... 针对老年人因摔倒后救助不及时而造成伤亡、给家庭和社会带来了严重负担,而及时发现老年人摔倒并通知其子女或者帮助其呼叫救助成为当前越来越迫切的需求的现状,以Kinect v2信息采集系统为平台,提出了一种基于特征融合与注意力机制优化的双流网络的跌倒检测方法,在有效提高跌倒检测准确率的同时,也避免了涉及用户隐私的问题。用骨骼点三维数据与骨骼向量夹角体现人体倾覆跌倒,通过图卷积神经网络(GCN)与双向门控循环单元(Bi-GRU)提取空域与时域特征,结合注意力机制与特征融合操作增强网络对跌倒行为特征信息的提取能力与学习能力,进一步提高老人跌倒事件检测的准确率。仿真结果表明,在实际场景测试与Florence 3D数据集中达到了较好的效果,验证了该方法的准确性与有效性。 展开更多
关键词 KINECT 注意力机制 特征融合 图卷积神经网络 双向门控循环单元
在线阅读 下载PDF
优化CNN-BiGRU-SA组合模型的BDS-3超短期钟差预报
13
作者 蔡茂 潘雄 +1 位作者 张龙杰 周秀鹏 《导航定位学报》 北大核心 2025年第4期60-69,共10页
针对钟差数据的非线性特点及单一模型在处理长程依赖问题中的局限性,提出一种融合卷积神经网络(CNN)-双向门控循环单元(BiGRU)-自注意力机制(SA)的北斗三号全球卫星导航系统(BDS-3)超短期钟差预报方法:利用CNN提取钟差数据中的非线性特... 针对钟差数据的非线性特点及单一模型在处理长程依赖问题中的局限性,提出一种融合卷积神经网络(CNN)-双向门控循环单元(BiGRU)-自注意力机制(SA)的北斗三号全球卫星导航系统(BDS-3)超短期钟差预报方法:利用CNN提取钟差数据中的非线性特征,通过BiGRU建模时序依赖关系,引入SA机制以动态分配特征权重;然后,进一步结合混沌映射与莱维(Levy)飞行策略改进北方苍鹰优化(INGO)算法,优化组合模型的超参数,构建INGO-CNN-BiGRUSA组合钟差预报模型;最后,利用德国地球科学研究中心提供的BDS-3钟差数据从原子钟类型、不同采样间隔进行1 h、3 h、6 h的超短期预报,从权重选择、超参数优化、预报精度、预报稳定度等方面验证组合模型的实用性。结果表明,该组合模型在超短期预报中具有较高的精度和稳定度,平均精度优于0.2 ns,平均稳定度优于0.25 ns。 展开更多
关键词 钟差预报 超参数 卷积神经网络(CNN) 双向门控循环单元(BiGRU) 自注意力机制(SA)
在线阅读 下载PDF
基于DDTW聚类和SK TCN-GC BiGRU的分布式光伏短期功率预测
14
作者 段宏 郭成 +1 位作者 孙海东 王嵩岭 《智慧电力》 北大核心 2025年第4期71-80,共10页
针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性... 针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性内核网络(SKNet)和全局上下文模块(GC Block)优化TCN与BiGRU模型,分别增强提取多尺度特征和全局信息的能力。仿真结果验证了所提模型的优越性,尤其在气象条件数据波动较大的情况下,表现出较强的鲁棒性。 展开更多
关键词 短期光伏功率预测 时间卷积神经网络 双向门控循环单元 导数动态时间弯曲聚类
在线阅读 下载PDF
采用CNN和Bidirectional GRU的时间序列分类研究 被引量:26
15
作者 张国豪 刘波 《计算机科学与探索》 CSCD 北大核心 2019年第6期916-927,共12页
时间序列数据具有非离散性、数据之间的时序相关性、特征空间维度大等特点,当前大多数分类方法需要经过复杂的数据处理或特征工程,未考虑到时间序列具有不同时间尺度特征以及序列数据之间的时序依赖。通过结合卷积神经网络和循环神经网... 时间序列数据具有非离散性、数据之间的时序相关性、特征空间维度大等特点,当前大多数分类方法需要经过复杂的数据处理或特征工程,未考虑到时间序列具有不同时间尺度特征以及序列数据之间的时序依赖。通过结合卷积神经网络和循环神经网络中的双向门控循环单元,提出了一个新的端对端深度学习神经网络模型BiGRU-FCN,不需要对数据进行复杂的预处理,并且通过不同的网络运算来获取多种特征信息,如卷积神经网络在时序信息上的空间特征以及双向循环神经网络在序列上的双向时序依赖特征,对单维时间序列进行分类。在大量的基准数据集上对模型进行实验与评估,实验结果表明,与现有的多种方法相比,所提出的模型具有更高的准确率,具有很好的分类效果。 展开更多
关键词 时间序列分类 深度学习 卷积神经网络 循环神经网络 双向门控循环单元
在线阅读 下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:14
16
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
在线阅读 下载PDF
基于KPCA-CNN-DBiGRU模型的短期负荷预测方法 被引量:4
17
作者 陈晓红 王辉 李喜华 《管理工程学报》 CSSCI CSCD 北大核心 2024年第2期221-231,共11页
本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度... 本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度双向门控循环单元网络模型进行负荷预测。以第九届全国电工数学建模竞赛试题A题中的负荷数据作为实际算例,结果表明所提方法较降维之前预测误差大大降低,与已有预测方法相比也有大幅的误差降低。 展开更多
关键词 核主成分分析 卷积神经网络 双向门控循环单元 负荷预测
在线阅读 下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:9
18
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于时序生成对抗网络的居民用户非侵入式负荷分解 被引量:3
19
作者 罗平 朱振宇 +3 位作者 樊星驰 孙博宇 张帆 吕强 《电力系统自动化》 EI CSCD 北大核心 2024年第2期71-81,共11页
现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。... 现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。利用降维网络对所有电器有功功率序列组成的高维向量进行降维以降低计算的复杂度,通过复原网络将结果还原为高维向量。基于电器运行状态和深度学习的非侵入式分解方法,运用卷积神经网络-双向门控循环单元构建状态复杂电器的负荷分解回归模型,对状态简单电器利用深度神经网络构建负荷识别分类模型。通过对比其他数据生成方法,以及改变典型公开数据集中生成数据比例所得的负荷分解结果验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷分解 对抗生成网络 降维网络 卷积神经网络-双向门控循环单元 深度神经网络
在线阅读 下载PDF
基于双层注意力和深度自编码器的时间序列异常检测模型 被引量:1
20
作者 尹春勇 赵峰 《计算机工程与科学》 CSCD 北大核心 2024年第5期826-835,共10页
目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动... 目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动窗口大小;其次,采用卷积神经网络提取时间序列高维度空间特征;然后,提出具有堆叠式Dropout双向门循环单元网络作为自编码器的基本结构,从而捕捉时间序列的相关性特征;最后,引入双层注意力机制,进一步提取特征,选择更加关键的时间序列,从而提高异常检测准确率。为了验证该模型的有效性,将DA-CBG-AE与6种基准模型在8个数据集上进行比较。最终的实验结果表明,DA-CBG-AE获得了最优的F1值(0.863),并且其检测性能相比最新的基准模型Tad-GAN高出25.25%。 展开更多
关键词 异常检测 双层注意力机制 自编码器 卷积神经网络 双向门循环单元
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部