Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi...Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.展开更多
To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and app...To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation.展开更多
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ...Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.展开更多
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来...滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。展开更多
文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之...文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之间的相关性大小选择合适的训练样本,利用Bi-LSTM进行测井曲线预测。同时,测井曲线前后关联性强,Bi-LSTM可以考虑数据间的前后关联,从而提高测井曲线预测精度。实验结果表明,考虑曲线相关性的Bi-LSTM模型能减少样本数据,明显提高预测精度,均方误差相比单向长短期记忆神经网络方法能减小50%以上,具有很好的应用前景。展开更多
文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升...文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升故障定位的精准性。为验证提出算法的有效性,将True、BiLSTM、极值域均值模式分解(Extremum field Mean Mode Decomposition,EMMD)+小波变换算法与本文算法进行对比实验分析。实验结果表明,基于小波变换和CNN-BiLSTM的电力电缆故障定位算法能够将定位误差控制在0.02 km以内,显著提高了故障定位的精度。展开更多
文摘Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.
基金Supported by the National Natural Science Foundation of China(U1663208,51520105005)the National Science and Technology Major Project of China(2017ZX05009-005,2016ZX05037-003)
文摘To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation.
基金supported by the International Research Center of Big Data for Sustainable Development Goals under Grant No.CBAS2022GSP05the Open Fund of State Key Laboratory of Remote Sensing Science under Grant No.6142A01210404the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant No.KLIGIP-2022-B03.
文摘Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.
文摘滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。
文摘文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之间的相关性大小选择合适的训练样本,利用Bi-LSTM进行测井曲线预测。同时,测井曲线前后关联性强,Bi-LSTM可以考虑数据间的前后关联,从而提高测井曲线预测精度。实验结果表明,考虑曲线相关性的Bi-LSTM模型能减少样本数据,明显提高预测精度,均方误差相比单向长短期记忆神经网络方法能减小50%以上,具有很好的应用前景。
文摘文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升故障定位的精准性。为验证提出算法的有效性,将True、BiLSTM、极值域均值模式分解(Extremum field Mean Mode Decomposition,EMMD)+小波变换算法与本文算法进行对比实验分析。实验结果表明,基于小波变换和CNN-BiLSTM的电力电缆故障定位算法能够将定位误差控制在0.02 km以内,显著提高了故障定位的精度。