期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
基于融合评价指标BERT-RGCN的油田评价区块调整措施推荐方法
1
作者 王梅 朱晓丽 +2 位作者 孙洪国 王海艳 濮御 《东北石油大学学报》 北大核心 2025年第5期110-120,I0008,共12页
为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价... 为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价区块及措施之间的交互信息构建异构图,利用BERT模型生成评价指标、评价区块及措施术语词向量,共同作为输入词向量,将融合评价指标信息的异构图和输入词向量放入RGCN模型训练,学习评价区块的有效表征;在某油田评价区块提供的数据集上进行实验对比。结果表明:EI-BERT-RGCN方法能够捕捉文本中隐含的复杂语义并缓解数据稀疏问题,能更好理解未观察到的评价指标与调整措施之间的潜在关系,提升节点的表示质量。EI-BERT-RGCN模型在精确率、召回率、F_(1)分数及ROC曲线下面积等评价指标上优于其他基准模型,在保持较高精确率的同时,展现更好的泛化能力和鲁棒性。该结果为油田评价区块调整措施推荐提供参考。 展开更多
关键词 异构图 变换器双向编码(bert) 预训练模型 关系图卷积神经网络(RGCN) 推荐算法 措施推荐 油田评价区块
在线阅读 下载PDF
融合BERT BiLSTM CRF的城市内涝灾害风险要素识别方法研究 被引量:1
2
作者 张乐 张海龙 +1 位作者 李锋 吴敏 《安全与环境学报》 北大核心 2025年第8期3176-3188,共13页
为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素... 为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。 展开更多
关键词 公共安全 城市内涝 双向编码器表征法 双向长短期记忆网络 条件随机场 舆情信息 风险要素识别
在线阅读 下载PDF
基于BERT和Bi-LSTM的题目难度预测:知识点标签增强模型
3
作者 叶航 柴春来 +2 位作者 张思赟 陈东烁 吴霁航 《计算机应用》 北大核心 2025年第S1期37-42,共6页
目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bi... 目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bidirectional Encoder Representations from Transformers)和双向长短时记忆(Bi-LSTM)模型的C语言题目难度预测模型FTKB-BiLSTM(Fusion of Title and Knowledge based on BERT and Bi-LSTM)。首先,利用BERT的中文预训练模型获得题目文本和知识点的词向量;其次,融合模块将融合后的信息通过BERT处理得到文本的信息表示,并输入Bi-LSTM模型中学习其中的序列信息,提取更丰富的特征;最后,把经Bi-LSTM模型得到的特征表示通过全连接层并经过Softmax函数处理得到题目难度分类结果。在Leetcode中文数据集和ZjgsuOJ平台数据集上的实验结果表明,相较于XLNet等主流的深度学习模型,所提模型的准确率更优,具有较强的分类能力。 展开更多
关键词 自然语言处理 深度学习 题目难度预测 bert 预训练模型
在线阅读 下载PDF
基于IWOA-BERT的磨煤机故障预警 被引量:1
4
作者 段明达 张胜 《振动与冲击》 北大核心 2025年第11期288-294,共7页
实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过... 实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过改进传统鲸鱼算法的收敛因子和引入高斯变异算子来增强算法的寻优能力;其次,选取与磨煤机故障相关的特征参数作为建模变量,利用改进鲸鱼算法优化BERT模型的超参数,建立故障预警模型;然后,计算正常状态数据中每个滑动窗口的相似度均值,选取最小值乘以阈值系数确定预警阈值;最后,根据专家系统推理预警时刻的故障类型并给出检修指导。将所提方法应用于某350 MW机组磨煤机的运行中,结果表明模型的预测准确率高,且能提前24 s给出预警信息,为工程应用提供了参考。 展开更多
关键词 磨煤机 故障预警 bert算法 改进鲸鱼优化算法(IWOA) 专家系统
在线阅读 下载PDF
基于BERT-BiLSTM-CRF的工业控制协议逆向工程
5
作者 连莲 李素敏 +1 位作者 宗学军 何戡 《沈阳工业大学学报》 北大核心 2025年第5期609-616,共8页
【目的】工业控制协议解析是工业互联网安全中的关键环节,但传统方法存在普适性差和准确率低的问题,导致协议解析效率低下,难以满足实际工业场景中对高精度和高适应性解析的需求。【方法】提出一种基于深度学习模型的工业控制协议逆向... 【目的】工业控制协议解析是工业互联网安全中的关键环节,但传统方法存在普适性差和准确率低的问题,导致协议解析效率低下,难以满足实际工业场景中对高精度和高适应性解析的需求。【方法】提出一种基于深度学习模型的工业控制协议逆向解析方法,通过结合BERT预训练模型、双向长短期记忆网络(BiLSTM)和条件随机场(CRF),提升协议解析的普适性和准确率,为工业控制系统的安全分析和漏洞挖掘提供技术支持。首先,利用BERT预训练模型对工业控制协议数据进行动态词向量编码,将协议数据转化为高维向量,以捕捉协议数据的语义信息。BERT预训练模型通过其强大的上下文理解能力,能够有效处理复杂且多样的协议数据。其次,采用双向长短期记忆网络对协议数据之间的关系以及协议数据与标签数据之间的关联性进行建模。双向长短期记忆网络能够捕获协议数据中的长距离依赖关系,从而更好地理解协议的结构和语义。最后,引入条件随机场作为约束条件,对工业控制协议的格式和语义进行最优预测。条件随机场通过引入标签之间的转移概率,进一步提高了预测的准确性和一致性。通过BERT预训练模型、双向长短期记忆网络和条件随机场的结合,实现了对工业控制协议的格式提取和语义分析。此外,本文方法还针对大规模协议数据进行了优化,确保其在处理复杂工业场景时的高效性和稳定性。【结果】针对三种典型工业控制协议展开实验,结果表明本文方法在格式提取和语义分析上的精度均超过96%,较传统方法有所提升,在不同协议上均表现出高适应性和准确性,能够有效识别字段边界与语义信息。【结论】本文方法显著提升了工业控制协议解析的普适性和准确率,为工业控制系统的安全分析提供了可靠的技术支持。未来将进一步优化模型,拓展应用场景,提升方法的实用性。 展开更多
关键词 工业控制协议 协议逆向工程 bert预训练模型 双向长短期记忆网络 条件随机场 词向量 格式提取 语义分析
在线阅读 下载PDF
基于BERT的心血管医疗指南实体关系抽取方法 被引量:19
6
作者 武小平 张强 +1 位作者 赵芳 焦琳 《计算机应用》 CSCD 北大核心 2021年第1期145-149,共5页
实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专... 实体关系抽取是医疗领域知识问答、知识图谱构建及信息抽取的重要基础环节之一。针对在心血管专病知识图谱构建的过程中尚无公开数据集可用的情况,收集了心血管疾病领域的医疗指南并进行相应的实体和关系类别的专业标注,构建了心血管专病知识图谱实体关系抽取的专业数据集。基于该数据集,首先提出双向变形编码器卷积神经网络(BERT-CNN)模型以实现中文语料中的关系抽取,然后根据中文语义中主要以词而不是字为基本单位的特性,提出了改进的基于全词掩模的双向变形编码器卷积神经网络(BERT(wwm)-CNN)模型用于提升在中文语料中关系抽取的性能。实验结果表明,改进的BERT(wwm)-CNN在所构建的关系抽取数据集上准确率达到0.85,召回率达到0.80,F1值达到0.83,优于对比的基于双向变形编码器长短期记忆网络(BERT-LSTM)模型和BERT-CNN模型,验证了改进网络模型的优势。 展开更多
关键词 实体关系抽取 心血管疾病 双向变形编码器网络 卷积神经网络 知识图谱
在线阅读 下载PDF
融合BERT与标签语义注意力的文本多标签分类方法 被引量:18
7
作者 吕学强 彭郴 +2 位作者 张乐 董志安 游新冬 《计算机应用》 CSCD 北大核心 2022年第1期57-63,共7页
多标签文本分类(MLTC)是自然语言处理(NLP)领域的重要子课题之一。针对多个标签之间存在复杂关联性的问题,提出了一种融合BERT与标签语义注意力的MLTC方法TLA-BERT。首先,通过对自编码预训练模型进行微调,从而学习输入文本的上下文向量... 多标签文本分类(MLTC)是自然语言处理(NLP)领域的重要子课题之一。针对多个标签之间存在复杂关联性的问题,提出了一种融合BERT与标签语义注意力的MLTC方法TLA-BERT。首先,通过对自编码预训练模型进行微调,从而学习输入文本的上下文向量表示;然后,使用长短期记忆(LSTM)神经网络将标签进行单独编码;最后,利用注意力机制显性突出文本对每个标签的贡献,以预测多标签序列。实验结果表明,与基于序列生成模型(SGM)算法相比,所提出的方法在AAPD与RCV1-v2公开数据集上,F1值分别提高了2.8个百分点与1.5个百分点。 展开更多
关键词 多标签分类 bert 标签语义信息 双向长短期记忆神经网络 注意力机制
在线阅读 下载PDF
基于BERT的水稻表型知识图谱实体关系抽取研究 被引量:24
8
作者 袁培森 李润隆 +1 位作者 王翀 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2021年第5期151-158,共8页
针对水稻表型知识图谱中的实体关系抽取问题,根据植物本体论提出了一种对水稻的基因、环境、表型等表型组学实体进行关系分类的方法。首先,获取水稻表型组学数据,并进行标注和分类;随后,提取关系数据集中的词向量、位置向量及句子向量,... 针对水稻表型知识图谱中的实体关系抽取问题,根据植物本体论提出了一种对水稻的基因、环境、表型等表型组学实体进行关系分类的方法。首先,获取水稻表型组学数据,并进行标注和分类;随后,提取关系数据集中的词向量、位置向量及句子向量,基于双向转换编码表示模型(BERT)构建水稻表型组学关系抽取模型;最后,将BERT模型与卷积神经网络模型、分段卷积网络模型进行结果比较。结果表明,在3种关系抽取模型中,BERT模型表现更佳,精度达95.11%、F1值为95.85%。 展开更多
关键词 水稻表型 知识图谱 关系抽取 双向转换编码表示模型
在线阅读 下载PDF
面向网络文本的BERT心理特质预测研究 被引量:8
9
作者 张晗 贾甜远 +2 位作者 骆方 张生 邬霞 《计算机科学与探索》 CSCD 北大核心 2021年第8期1459-1468,共10页
随着互联网的普及应用,通过网络平台进行表达和交流的用户越来越多,在此过程中不可避免地会留下与个人相关的大量网络文本数据和信息,这些非结构化的文本数据往往体现着不同场景下的真实表达,反映了人们内在的心理特质及人格倾向。利用... 随着互联网的普及应用,通过网络平台进行表达和交流的用户越来越多,在此过程中不可避免地会留下与个人相关的大量网络文本数据和信息,这些非结构化的文本数据往往体现着不同场景下的真实表达,反映了人们内在的心理特质及人格倾向。利用文本挖掘相关技术基于网络文本数据分析心理特质可以弥补传统心理测量方法易受应试动机等因素影响的缺陷。近年来,BERT语言表示模型在文本分类、情感分析等任务上取得了很好的效果。针对网络文本数据构建心理特质预测模型,基于BERT获取完整的上下文语义特征和长距离的上下文依赖关系;同时考虑到分类器内部结构的差异可能会导致不同的分类效果,在下游分类任务中分别采用BERT BASE模型的全连接层和经典的随机森林算法作为两种不同的分类器进行模型效果对比。结果显示,基于BERT的文本分类模型能够有效实现心理特质的预测,平均准确率、平均精准率等各项指标都在97%以上。 展开更多
关键词 bert 心理特质 注意力机制 TRANSFORMER 文本挖掘
在线阅读 下载PDF
基于注意力机制的双BERT有向情感文本分类研究 被引量:12
10
作者 张铭泉 周辉 曹锦纲 《智能系统学报》 CSCD 北大核心 2022年第6期1220-1227,共8页
在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换... 在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换神经网络的双向编码表示(bi-directional encoder representations from transformers, BERT)有向情感文本分类模型。该模型由输入模块、情感分析模块、政治实体方向模块和分类模块四部分组成。情感分析模块和政治实体方向模块具有相同结构,都先采用BERT预训练模型对输入信息进行词嵌入,再采用三层神经网络分别提取实体之间的情感信息和情感方向信息,最后使用注意力机制将两种信息融合,实现对政治新闻文本的分类。在相关数据集上进行实验,结果表明该模型优于现有模型。 展开更多
关键词 情感分析 变换神经网络的双向编码表示 预训练模型 注意力机制 深度学习 机器学习 文本分类 神经网络
在线阅读 下载PDF
基于BERT的数控机床故障领域命名实体识别 被引量:11
11
作者 褚燕华 蒋文 +2 位作者 王丽颖 张晓琳 王乾龙 《科学技术与工程》 北大核心 2022年第14期5737-5743,共7页
针对数控(computer numerical control,CNC)机床故障领域命名实体识别方法中存在实体规范不足及有效实体识别模型缺乏等问题,制定了领域内实体标注策略,提出了一种基于双向转换编码器(bidirectional encoder representations from trans... 针对数控(computer numerical control,CNC)机床故障领域命名实体识别方法中存在实体规范不足及有效实体识别模型缺乏等问题,制定了领域内实体标注策略,提出了一种基于双向转换编码器(bidirectional encoder representations from transformers,BERT)的数控机床故障领域命名实体识别方法。采用BERT编码层预训练,将生成向量输入到双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)交互层以提取上下文特征,最终通过条件随机域(conditional random field,CRF)推理层输出预测标签。实验结果表明,BERT-BiLSTM-CRF模型在数控机床故障领域更具优势,与现有模型相比,F_(1)提升大于1.85%。 展开更多
关键词 命名实体识别 数控机床故障领域 双向转换编码器
在线阅读 下载PDF
加入自注意力机制的BERT命名实体识别模型 被引量:28
12
作者 毛明毅 吴晨 +1 位作者 钟义信 陈志成 《智能系统学报》 CSCD 北大核心 2020年第4期772-779,共8页
命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对... 命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对BERT微调训练对计算机性能要求较高的问题,采用了固定参数嵌入的方式对BERT进行应用,搭建了BERT-BiLSTM-CRF模型。并在该模型的基础上进行了两种改进实验。方法一,继续增加自注意力(self-attention)层,实验结果显示,自注意力层的加入对模型的识别效果提升不明显。方法二,减小BERT模型嵌入层数。实验结果显示,适度减少BERT嵌入层数能够提升模型的命名实体识别准确性,同时又节约了模型的整体训练时间。采用9层嵌入时,在MSRA中文数据集上F1值提升至94.79%,在Weibo中文数据集上F1值达到了68.82%。 展开更多
关键词 命名实体识别 bert 自注意力机制 深度学习 条件随机场 自然语言处理 双向长短期记忆网络 序列标注
在线阅读 下载PDF
基于BERT的交互式地质实体标注语料库构建方法 被引量:9
13
作者 张春菊 张磊 +3 位作者 陈玉冰 刘文聪 薄嘉晨 肖鸿飞 《地理与地理信息科学》 CSCD 北大核心 2022年第4期7-12,共6页
地质实体识别是地质文本信息挖掘和地质知识图谱构建的重要基础,高质量的地质实体语料库是提高地质实体识别效果的重要因素,但目前用于中文地质实体识别的标注语料较少且内容局限于一定领域范围内,而传统的人工标注方法往往耗时耗力且... 地质实体识别是地质文本信息挖掘和地质知识图谱构建的重要基础,高质量的地质实体语料库是提高地质实体识别效果的重要因素,但目前用于中文地质实体识别的标注语料较少且内容局限于一定领域范围内,而传统的人工标注方法往往耗时耗力且依赖专业知识。因此,该文开展基于BERT的交互式地质实体标注方法研究,通过BERT-BiLSTM-CRF模型自动标注文本中的地质实体并结合人机交互方式校正,同时利用标注的语料扩充原始语料规模和优化地质实体识别模型的性能。实验表明,基于BERT-BiLSTM-CRF模型比CRF、Word2vec-BiLSTM-CRF、Lattice-LSTM-CRF 3种常用模型的识别效果好,在自主构建的初始地质实体语料库的F 1值达91.47%,扩大语料规模后提升了1.36%,在保证质量的前提下,减少了人工标注工作,可实现大规模、高质量地质实体标注语料库的构建。 展开更多
关键词 bert 地质实体识别 交互式 地质实体语料库
在线阅读 下载PDF
基于BERT的初等数学文本命名实体识别方法 被引量:9
14
作者 张毅 王爽胜 +2 位作者 何彬 叶培明 李克强 《计算机应用》 CSCD 北大核心 2022年第2期433-439,共7页
在初等数学领域的命名实体识别(NER)中,针对传统命名实体识别方法中词嵌入无法表征一词多义以及特征提取过程中忽略部分局部特征的问题,提出一种基于BERT的初等数学文本命名实体识别方法——BERT-BiLSTM-IDCNN-CRF。首先,采用BERT进行... 在初等数学领域的命名实体识别(NER)中,针对传统命名实体识别方法中词嵌入无法表征一词多义以及特征提取过程中忽略部分局部特征的问题,提出一种基于BERT的初等数学文本命名实体识别方法——BERT-BiLSTM-IDCNN-CRF。首先,采用BERT进行预训练,然后将训练得到的词向量输入到双向长短期记忆(BiLSTM)网络与迭代膨胀卷积网络(IDCNN)中提取特征,再将两种神经网络输出的特征进行合并,最后经过条件随机场(CRF)修正后进行输出。实验结果表明:BERT-BiLSTM-IDCNN-CRF在初等数学试题数据集上的F1值为93.91%,相较于BiLSTM-CRF基准方法的F1值提升了4.29个百分点,相较于BERT-BiLSTM-CRF方法的F1值提高了1.23个百分点;该方法对线、角、面、数列等实体识别的F1值均高于91%,验证了该方法对初等数学实体识别的有效性。此外,在所提方法的基础上结合注意力机制后,该方法的召回率下降了0.67个百分点,但准确率上升了0.75个百分点,注意力机制的引入对所提方法的识别效果提升不大。 展开更多
关键词 命名实体识别 初等数学 bert 双向长短期记忆网络 膨胀卷积 注意力机制
在线阅读 下载PDF
基于BERT的中文多关系抽取方法研究 被引量:9
15
作者 黄梅根 刘佳乐 刘川 《计算机工程与应用》 CSCD 北大核心 2021年第21期234-240,共7页
构建三元组时在文本句子中抽取多个三元组的研究较少,且大多基于英文语境,为此提出了一种基于BERT的中文多关系抽取模型BCMRE,它由关系分类与元素抽取两个任务模型串联组成。BCMRE通过关系分类任务预测出可能包含的关系,将预测关系编码... 构建三元组时在文本句子中抽取多个三元组的研究较少,且大多基于英文语境,为此提出了一种基于BERT的中文多关系抽取模型BCMRE,它由关系分类与元素抽取两个任务模型串联组成。BCMRE通过关系分类任务预测出可能包含的关系,将预测关系编码融合到词向量中,对每一种关系复制出一个实例,再输入到元素抽取任务通过命名实体识别预测三元组。BCMRE针对两项任务的特点加入不同前置模型;设计词向量优化BERT处理中文时以字为单位的缺点;设计不同的损失函数使模型效果更好;利用BERT的多头与自注意力机制充分提取特征完成三元组的抽取。BCMRE通过实验与其他模型,以及更换不同的前置模型进行对比,在F1的评估下取得了相对较好的结果,证明了模型可以有效性提高抽取多关系三元组的效果。 展开更多
关键词 命名实体识别 关系抽取 前置模型 分类 串联任务 bert模型
在线阅读 下载PDF
融合BERT中间隐藏层的方面级情感分析模型 被引量:10
16
作者 曾桢 王擎宇 《科学技术与工程》 北大核心 2023年第12期5161-5169,共9页
现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分... 现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分析模型。首先,将评论和方面信息拼接为句子对输入BERT模型,通过BERT的自注意力机制建立评论与方面信息的联系;其次,构建门控卷积网络(gated convolutional neural network,GCNN)对BERT所有隐藏层输出的词向量矩阵进行特征提取,并将提取的特征进行最大池化、拼接得到特征序列;然后,使用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络对特征序列进行融合,编码BERT不同隐藏层的信息;最后,引入注意力机制,根据特征与方面信息的相关程度赋予权值。在公开的SemEval2014 Task4评论数据集上的实验结果表明:所提模型在准确率和F 1值两种评价指标上均优于BERT、CapsBERT(capsule BERT)、BERT-PT(BERT post train)、BERT-LSTM(BERT long and short-term memory)等对比模型,具有较好的情感分类效果。 展开更多
关键词 方面级情感分析 bert 门控卷积网络(GCNN) 双向门控循环单元(BiGRU) 注意力机制
在线阅读 下载PDF
基于BERT与生成对抗的民航陆空通话意图挖掘 被引量:3
17
作者 马兰 孟诗君 吴志军 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期740-750,共11页
针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transf... 针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transformers,BERT)与生成对抗网络(generative adversarial network,GAN)的陆空通话意图信息挖掘方法,并引入航班池信息对提取的部分信息进行校验修正,形成空中交通管制(air traffic control,ATC)系统可理解的结构化信息。首先,使用改进的GAN模型进行陆空通话智能文本生成,可有效进行数据增强,平衡各类实体信息分布并扩充数据集;然后,根据欧洲单一天空空中交通管理项目定义的本体规则进行意图的分类与标注;之后,通过BERT预训练模型生成字向量并解决一词多义问题,利用双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络双向编码提取上下句语义特征,同时将该语义特征送入条件随机场(conditional random field,CRF)模型进行推理预测,学习标签的依赖关系并加以约束,以获取全局最优结果;最后,根据编辑距离(edit distance,ED)算法进行意图信息合理性校验与修正。对比实验结果表明,所提方法的宏平均F_(1)值达到了98.75%,在民航陆空通话数据集上的意图挖掘性能优于其他主流模型,为其加入数字化进程奠定了基础。 展开更多
关键词 民航陆空通话 信息提取 生成对抗网络 本体 双向转换编码器
在线阅读 下载PDF
基于MCA-BERT的数学文本分类方法 被引量:3
18
作者 杨先凤 龚睿 李自强 《计算机工程与设计》 北大核心 2023年第8期2312-2319,共8页
为尽可能地提高数学文本分类的效果,通过构建数学文本数据集并对该数据集进行分析,提出增强文本实体信息的多通道注意力机制-Transformers的双向编码器表示(MCA-BERT)模型。通过Word2vec词向量的平均池化获得句子级的实体信息,通过注意... 为尽可能地提高数学文本分类的效果,通过构建数学文本数据集并对该数据集进行分析,提出增强文本实体信息的多通道注意力机制-Transformers的双向编码器表示(MCA-BERT)模型。通过Word2vec词向量的平均池化获得句子级的实体信息,通过注意力机制给不同词赋予不同权重,获得词语级的实体信息,将两类实体信息与BERT输出的上下文信息拼接,通过Softmax层得到分类结果。该方法在数学文本数据集上的F1值相比BERT单通道的方法提高了2.1个百分点。实验结果说明,该方法能够有效增强文本实体信息,获得更好的分类效果。 展开更多
关键词 数学文本分类 实体信息 注意力机制 多通道 双向编码器表示 词向量 分类器
在线阅读 下载PDF
利用BERT和覆盖率机制改进的HiNT文本检索模型 被引量:4
19
作者 邸剑 刘骏华 曹锦纲 《智能系统学报》 CSCD 北大核心 2024年第3期719-727,共9页
为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个... 为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个段提取关键主题词,然后用基于变换器的双向编码器(bidirectional encoder representations from transformers,BERT)模型将其编码为多个稠密的语义向量,再利用引入覆盖率机制的局部匹配层进行处理,使模型可以根据文档的局部段级别粒度和全局文档级别粒度进行相关性计算,提高检索的准确率。本文提出的模型在MS MARCO和webtext2019zh数据集上与多个检索模型进行对比,取得了最优结果,验证了本文提出模型的有效性。 展开更多
关键词 基于变换器的双向编码器 分层神经匹配模型 覆盖率机制 文本检索 语义表示 特征提取 自然语言处理 相似度 多粒度
在线阅读 下载PDF
融合汉字输入法的BERT与BLCG的长文本分类研究 被引量:3
20
作者 杨文涛 雷雨琦 +1 位作者 李星月 郑天成 《计算机工程与应用》 CSCD 北大核心 2024年第9期196-202,共7页
现有的中文长文本分类模型中,没有考虑汉字读音、笔画等特征信息,因此不能充分表示中文语义;同时,长文本中常常包含大量与目标主题无关的信息,甚至部分文本与其他主题相关,导致模型误判。为此,提出了一种融合汉字输入法的BERT(BERT fuse... 现有的中文长文本分类模型中,没有考虑汉字读音、笔画等特征信息,因此不能充分表示中文语义;同时,长文本中常常包含大量与目标主题无关的信息,甚至部分文本与其他主题相关,导致模型误判。为此,提出了一种融合汉字输入法的BERT(BERT fused Chinese input methods,CIMBERT)、带有门控机制的长短期记忆卷积网络(BiLSTM fused CNN with gating mechanism,BLCG)相结合的文本分类方法。该方法使用BERT模型进行文本的向量表示,在BERT模型的输入向量中,采用了拼音和五笔两种常用的汉字输入法,增强了汉字的语义信息。建立了BLCG模型进行文本特征提取,该模型使用双向长短期记忆网络(BiLSTM)进行全局特征提取、卷积神经网络(CNN)进行局部特征提取,并通过门控机制(gating mechanism)动态融合全局特征和局部特征,解决了部分文本与目标主题无关导致模型误判的问题。在THUCNews数据集与Sogou语料库上对该方法进行了验证,其准确率为97.63%、95.43%,F1-score为97.68%、95.49%,优于其他文本分类模型。 展开更多
关键词 长文本分类 bert模型 卷积神经网络 长短期记忆网络 门控机制
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部