The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlighte...The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability.展开更多
By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neu...By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results.展开更多
文摘The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability.
基金supported by Natural Science Foundation of Hebei Province under Grant No.E2007000381
文摘By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results.