期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Navigation jamming signal recognition based on long short-term memory neural networks 被引量:3
1
作者 FU Dong LI Xiangjun +2 位作者 MOU Weihua MA Ming OU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期835-844,共10页
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ... This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN). 展开更多
关键词 satellite navigation jamming recognition time-frequency(TF)analysis long short-term memory(lstm)
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
2
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(long short-term memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于差分处理的EMD-LSTM短时空中交通流量预测
3
作者 周睿 邱爽 +2 位作者 孟双杰 李明 张强 《科学技术与工程》 北大核心 2025年第2期842-849,共8页
随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(emp... 随着中国民航的飞速发展,终端区空中交通流量与日俱增,短时空中交通流量预测对于精准实施空中交通流量管理具有重要意义。为提高短时空中交通流量预测的准确性,提出了基于数据差分处理(data differential processing)的经验模态分解(empirical mode decomposition,EMD)和长短期记忆(long short-term memory,LSTM)相结合的短时空中交通流量预测模型。首先,该模型对短时空中交通流量序列进行经验模态分解;其次,为了提高预测精度,运用数据差分对时间序列进行平稳化处理;最后,将平稳处理后的序列分别输入LSTM网络模型进行预测,经过数据重构,得到最终的短时流量预测值。利用郑州新郑国际机场数据进行了实验验证,结果表明,该模型预测精度和拟合程度的典型指标RSME、MAE、R^(2)分别为0.29%,0.08%、96.40%,相较于其他方法,预测精度大幅度提高,可以为短时空中交通流量预测提供有益参考。 展开更多
关键词 空中交通流量管理 短时空中交通流量预测 经验模态分解(empirical mode decomposition EMD) 数据差分处理(data differential processing) 长短期记忆(long short-term memory lstm)
在线阅读 下载PDF
利用长短期记忆网络LSTM对赤道太平洋海表面温度短期预报 被引量:2
4
作者 张桃 林鹏飞 +6 位作者 刘海龙 郑伟鹏 王鹏飞 徐天亮 李逸文 刘娟 陈铖 《大气科学》 CSCD 北大核心 2024年第2期745-754,共10页
海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。... 海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。本文基于最优插值海表面温度(OISST)的日平均SST数据,利用长短期记忆(LSTM)网络构建了未来10天赤道太平洋(10°S~10°N,120°E~80°W)SST的逐日预报模型。LSTM预报模型利用1982~2010年的观测数据进行训练,2011~2020年的观测数据作为初值进行预报和检验评估。结果表明:赤道太平洋东部地区预报均方根误差(RMSE)大于中、西部,东部预报第1天RMSE为0.6℃左右,而中、西部均小于0.3℃。在不同的年际变化位相,预报RMSE在拉尼娜出现时期最大,正常年份次之,厄尔尼诺时期最小,RMSE在拉尼娜时期比在厄尔尼诺时期可达20%。预报偏差整体表现为东正、西负。相关预报技巧上,中部最好,可预报天数基本为10天以上,赤道冷舌附近可预报天数为4~7天,赤道西边部分地区可预报天数为3天。预报模型在赤道太平洋东部地区各月份预报技巧普遍低于西部地区,相比较而言各区域10、11月份预报技巧最低。总的来说,基于LSTM构建的SST预报模型能很好地捕捉到SST在时序上的演变特征,在不同案例中预报表现良好。同时该预报模型依靠数据驱动,能迅速且较好地预报未来10天以内的日平均SST的短期变化。 展开更多
关键词 海表面温度 lstm (long short-term memory) 短期预报 赤道太平洋
在线阅读 下载PDF
基于Bi-LSTM的浅层地下双孔洞探测技术 被引量:2
5
作者 梁靖 张红 +3 位作者 叶晨 周立成 刘泽佳 汤立群 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第6期778-783,共6页
文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,... 文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,并将反射信号作为深度学习的输入,以输出孔洞信息,建立一种新型的智能孔洞探测方法。结果表明,双向长短期记忆神经网络(bidirectional long short-term memory neural network,Bi-LSTM)的预测模型对于地下双孔洞的工况具有较高的识别准确率,在容许误差为2 m的情况下,孔洞位置和直径的预测准确率可达95.3%。该研究验证了基于深度学习的多孔洞探测技术的可行性,有望为施工前期土层地质状况的评估提供技术保障。 展开更多
关键词 地下孔洞探测 桩锤激震 深度学习 双向长短期记忆神经网络(Bi-lstm) 有限元仿真
在线阅读 下载PDF
自样本特征构造的1DCNN-BiLSTM网侧光伏功率预测 被引量:4
6
作者 欧阳卫年 赵紫昱 陈渊睿 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期151-158,共8页
为解决电网难以获取NWP数据和无法建立光伏功率预测模型的问题,提出一种自样本特征构造的一维卷积双向长短期记忆神经网络光伏发电功率预测方法。通过K均值聚类和功率骤减事件检测的特征工程获取细粒度的天气状态标签,实现基于自身样本... 为解决电网难以获取NWP数据和无法建立光伏功率预测模型的问题,提出一种自样本特征构造的一维卷积双向长短期记忆神经网络光伏发电功率预测方法。通过K均值聚类和功率骤减事件检测的特征工程获取细粒度的天气状态标签,实现基于自身样本的特征构造,以解决样本特征缺少问题;采用卷积和长短期记忆网络结合的模型结构,解决局部特征提取和长期依赖的问题。算例验证结果表明,所提方法改善整体的预测性能,降低多特征数据存在的数据匮乏和数据稳定性风险,为模型输入特征较少的网侧光伏功率短期预测提供一种有效途径。 展开更多
关键词 光伏功率预测 功率骤降事件检测 自样本特征构造 卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
Real-time UAV path planning based on LSTM network 被引量:2
7
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
在线阅读 下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM 被引量:1
8
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) long short-term memory(lstm) Layer counting Multi-source fusion
在线阅读 下载PDF
基于注意力机制与XBOA-Bi-LSTM的离心式压缩机故障预警方法 被引量:4
9
作者 袁镇华 茅大钧 李玉珍 《机电工程》 CAS 北大核心 2024年第3期400-408,共9页
由于离心式压缩机存在着运行工况复杂、维修成本昂贵和长输管道工作环境恶劣的问题,为此,提出了一种基于注意力机制(AM)和蝴蝶算法优化双向长短期记忆神经网络(XBOA-Bi-LSTM)的离心式压缩机故障预警方法。首先,针对传统蝴蝶算法的收敛... 由于离心式压缩机存在着运行工况复杂、维修成本昂贵和长输管道工作环境恶劣的问题,为此,提出了一种基于注意力机制(AM)和蝴蝶算法优化双向长短期记忆神经网络(XBOA-Bi-LSTM)的离心式压缩机故障预警方法。首先,针对传统蝴蝶算法的收敛速度慢、转换概率单一和容易陷入局部最优等问题,通过引入无限折叠迭代混叠映射以丰富蝴蝶算法的初始种群;同时,提出了一种基于种群离散度与迭代次数的自适应惯性转换概率,以提高蝴蝶算法的寻优能力;然后,采用了灰色关联度分析法对测点数据进行了特征提取,结合注意力机制对输入序列进行了灰色关联度系数赋权;最后,建立了双向长短期记忆神经网络故障预警模型,采用仿真实验完成了对离心式压缩机的故障预警;以某天然气长输管道机组的离心式压缩机作为仿真对象,对该离心式压缩机故障预警方法的可行性进行了验证。研究结果表明:采用基于注意力机制与XBOA-Bi-LSTM的离心式压缩机故障预警方法时,在离心式压缩机故障发生前2 h~3 h内就发出预警信号,实现了对于离心式压缩机进气过滤器压差异常与支撑轴承工作异常的故障预警目的。 展开更多
关键词 离心式压缩机 蝴蝶优化算法 灰色关联度分析法 注意力机制 双向长短期记忆神经网络 故障特征提取
在线阅读 下载PDF
Track correlation algorithm based on CNN-LSTM for swarm targets
10
作者 CHEN Jinyang WANG Xuhua CHEN Xian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期417-429,共13页
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms... The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets. 展开更多
关键词 track correlation correlation accuracy rate swarm target convolutional neural network(CNN) long short-term memory(lstm)neural network
在线阅读 下载PDF
基于CNN和Bi-LSTM的脑电波情感分析 被引量:12
11
作者 朱丽 杨青 +2 位作者 吴涛 李晨 李铭 《应用科学学报》 CAS CSCD 北大核心 2022年第1期1-12,共12页
针对目前大多数脑电波情感识别方法存在的依赖手动特征提取等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)网络的混合模型。首先将一维数据转换... 针对目前大多数脑电波情感识别方法存在的依赖手动特征提取等问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)网络的混合模型。首先将一维数据转换为二维数据,采用CNN提取空间特征;然后将一维数据输入Bi-LSTM,获取时间特征;最后将融合的空间和时间特征输入Softmax分类器,得到最终分类结果。在DEAP数据集上的实验结果表明:CNN和Bi-LSTM混合模型具有较好的分类性能,在效价度和唤醒度上的准确率分别达到88.55%和89.07%,是一种可行的脑电波情感分类模型。 展开更多
关键词 脑电信号 情感分类 卷积神经网络 双向长短时记忆网络 深度学习
在线阅读 下载PDF
基于相关性分析的Bi-LSTM测井曲线预测方法 被引量:5
12
作者 查文舒 乔奇 +1 位作者 刘子雄 李道伦 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第5期700-706,共7页
文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之... 文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之间的相关性大小选择合适的训练样本,利用Bi-LSTM进行测井曲线预测。同时,测井曲线前后关联性强,Bi-LSTM可以考虑数据间的前后关联,从而提高测井曲线预测精度。实验结果表明,考虑曲线相关性的Bi-LSTM模型能减少样本数据,明显提高预测精度,均方误差相比单向长短期记忆神经网络方法能减小50%以上,具有很好的应用前景。 展开更多
关键词 测井曲线 相关性 循环神经网络 长短期记忆神经网络 双向长短期记忆(Bi-lstm)神经网络
在线阅读 下载PDF
基于融合状态预测的深度强化学习A2C的交通信号控制
13
作者 叶宝林 孙瑞涛 +1 位作者 李灵犀 吴维敏 《计算机工程》 北大核心 2025年第5期33-42,共10页
现有基于强化学习的交通信号控制方法主要使用历史交通状态和当前时间步的实时交通状态来确定下一个时间步的控制策略,造成控制策略始终滞后于交通状态一个时间步。为了解决该问题,提出一种基于融合交通状态预测的深度强化学习优势演员... 现有基于强化学习的交通信号控制方法主要使用历史交通状态和当前时间步的实时交通状态来确定下一个时间步的控制策略,造成控制策略始终滞后于交通状态一个时间步。为了解决该问题,提出一种基于融合交通状态预测的深度强化学习优势演员评论家(A2C)的交通信号控制方法。首先,为了获取未来时间步的交通状态,以确保制定的控制策略能够更精准地响应实时交通状态下的决策需求,设计一个长短时记忆(LSTM)网络预测路网未来时间步的交通状态。然后,为了提高输入深度强化学习模型中数据的准确性和鲁棒性,设计一个卡尔曼滤波器对采集的历史交通状态数据和LSTM网络预测的未来交通状态数据进行融合。其次,为了使深度强化学习模型能够更全面地理解交通流量中包含的时间依赖关系,并实现更高效和稳定的交通信号控制决策,提出一种融合双向LSTM网络的A2C算法。最后,基于微观交通仿真(SUMO)平台的仿真测试结果表明,与传统交通信号控制方法和基于深度强化学习A2C的交通信号控制方法相比,该方法在低峰、平峰和高峰两种不同交通流量状态下均能够取得更好的交通信号控制效益。 展开更多
关键词 交通信号控制 优势演员评论家 交通状态预测 双向长短时记忆网络
在线阅读 下载PDF
基于改进Bi-LSTM-CRF的农业问答系统研究 被引量:12
14
作者 白皓然 孙伟浩 +1 位作者 金宁 马皓冉 《中国农机化学报》 北大核心 2023年第2期99-105,共7页
针对农业领域问答系统面临的实体识别困难的问题,提出一种基于改进Bi-LSTM-CRF的实体识别方法。首先通过BERT预训练模型的预处理,生成基于上下文信息的词向量,然后将训练出的词向量输入Bi-LSTM-CRF做进一步的训练处理,最后,利用Python的... 针对农业领域问答系统面临的实体识别困难的问题,提出一种基于改进Bi-LSTM-CRF的实体识别方法。首先通过BERT预训练模型的预处理,生成基于上下文信息的词向量,然后将训练出的词向量输入Bi-LSTM-CRF做进一步的训练处理,最后,利用Python的Django框架设计农业领域的实体识别、实体查询、农知问答等子系统。经过试验对比,所提出的改进的Bi-LSTM-CRF在农业信息领域具有更好的实体识别能力,在农业信息语料库上的精确率、召回率和F1值分别为93.23%、91.08%和92.16%。实现农业领域实体识别和农业信息问答的知识图谱网站演示,对农业信息化的发展具有重要意义。 展开更多
关键词 智能问答系统 知识图谱 双向长短期记忆模型(Bi-lstm) 条件随机场(CRF)
在线阅读 下载PDF
基于ResNet和双向LSTM融合的物联网入侵检测分类模型构建与优化研究 被引量:10
15
作者 陈红松 陈京九 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第8期1-8,共8页
为提高物联网入侵检测模型的综合性能,将残差神经网络(Residual Networks,ResNet)与双向长短时记忆(Long-Short Term Memory,LSTM)网络融合,构建物联网入侵检测分类模型.针对大规模物联网流量快速批量处理问题,在对原始数据进行清洗、... 为提高物联网入侵检测模型的综合性能,将残差神经网络(Residual Networks,ResNet)与双向长短时记忆(Long-Short Term Memory,LSTM)网络融合,构建物联网入侵检测分类模型.针对大规模物联网流量快速批量处理问题,在对原始数据进行清洗、转换等预处理基础上,提出将多条流量样本转换为灰度图,并利用基于ResNet和双向LSTM融合的深度学习方法构建物联网入侵检测分类模型.对分类模型的网络结构、可复用性进行综合优化实验,得到最终优化模型,分类准确率达到96.77%,综合优化后的模型构建时间为39.85 s.与其他机器学习算法结果相比,该优化方法在分类准确率和效率两个方面取得了很好的效果,综合性能优于传统的入侵检测分类模型. 展开更多
关键词 入侵检测 残差网络 双向lstm网络 图像分类 物联网
在线阅读 下载PDF
一种兼容海洋环境的改进Transformer声呐探测效能快速预报模型
16
作者 汪晶晗 陈欢 +1 位作者 金宇琦 兰朝凤 《声学技术》 北大核心 2025年第2期164-170,共7页
为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模... 为提升高复杂海洋环境下声呐探测距离预测的准确性和效率,文章提出一种基于改进Transformer的传播损失与声呐探测距离建模方法,该方法能够兼容复杂海洋环境下不同点位、不同方向声信号传播损失差异,能够基于声呐方程及声呐主被动工作模式,快速、有效地预测多点位多方向的声呐探测距离。以真实大区域海洋环境计算得到的传播损失数据为输入,通过将双向长短时记忆网络(bidirectional long short-term memory,Bi-LSTM)与Transformer架构中自注意力机制相结合,使得模型能够有效捕捉复杂环境变化的局部精确性和全局特征。实验结果表明,所提模型预测结果与声呐方程耦合积分方式得到的探测距离具有较好的一致性;同时计算效率提高了约1 000倍,提升了声呐性能的预报效率。 展开更多
关键词 声呐性能快速预测 深度学习 双向长短时记忆网络(Bi-lstm) Transformer架构
在线阅读 下载PDF
融合注意力机制与时空图卷积网络的航空发动机剩余使用寿命预测
17
作者 屈超雄 夏小东 +2 位作者 张洋 何启学 李雨轩 《计算机应用》 北大核心 2025年第S1期372-376,共5页
针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Lon... 针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Long short-term memory and ATTenTion mechanism)。首先,使用一维卷积神经网络(1D-CNN)提取初始特征;其次,依次使用图卷积网络(GCN)和双向长短期记忆(Bi-LSTM)网络分别提取空间特征和时间特征;再次,利用自注意力机制处理特征并重新分配权重;最后,输入全连接网络获得RUL预测结果。使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证所提模型的有效性。实验结果显示,与先进模型相比,所提模型的Score分数在3个数据子集上取得最小值,在1个数据子集上取得次小值;均方根误差(RMSE)在1个数据子集上取得最小值,在3个数据子集上取得次小值。消融实验结果也验证了所提模型的各模块能有效提升预测精度。 展开更多
关键词 剩余使用寿命 预测性维护 图卷积网络 时间序列 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于固定窗漂移检测的MSWI过程CO排放建模
18
作者 汤健 张润雨 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第8期930-943,共14页
针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历... 针对城市固废焚烧(municipal solid waste incineration, MSWI)过程中能够表征燃烧过程是否稳定的关键工业参数--一氧化碳(carbon monoxide, CO)排放浓度的动态时变特性,提出基于固定窗漂移检测的MSWI过程CO排放建模方法。首先,基于历史数据集采用k-means算法获取典型样本池(typical sample pool, TSP),构建基于长短期记忆(long short-term memory, LSTM)神经网络的离线预测模型和基于核主成分分析(kernel principal component analysis, KPCA)的漂移指标计算模型。然后,针对每个在线采集样本,在预设定固定窗口未填满时基于历史LSTM神经网络模型进行在线预测,在预设定固定窗口填满时采用历史KPCA模型进行漂移检测。最后,利用指标霍特林统计量T2和平方预测误差(squared prediction error, SPE)判断是否产生漂移。若未产生漂移,则返回至新窗口期;若产生漂移,则合并历史数据和漂移数据以更新TSP、LSTM模型和KPCA模型。工业现场实际数据的仿真验证了所提方法的合理性和有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 一氧化碳(carbon monoxide CO)排放 概念漂移检测 典型样本池(typical sample pool TSP) 长短期记忆(long short-term memory lstm)神经网络 核主成分分析(kernel principal component analysis KPCA)
在线阅读 下载PDF
Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph
19
作者 ZHANG Yue JIANG Jiang +3 位作者 YANG Kewei WANG Xingliang XU Chi LI Minghao 《Journal of Systems Engineering and Electronics》 2025年第1期139-154,共16页
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi... Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method. 展开更多
关键词 system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(Bilstm-CRF) model generation systems modeling language
在线阅读 下载PDF
基于双向LSTM的Seq2Seq模型在加油站时序数据异常检测中的应用 被引量:18
20
作者 陶涛 周喜 +1 位作者 马博 赵凡 《计算机应用》 CSCD 北大核心 2019年第3期924-929,共6页
加油时序数据包含加油行为的多维信息,但是指定加油站点数据较为稀疏,现有成熟的数据异常检测算法存在挖掘较多假性异常点以及遗漏较多真实异常点的缺陷,并不适用于挖掘加油站时序数据。提出一种基于深度学习的异常检测方法识别加油异... 加油时序数据包含加油行为的多维信息,但是指定加油站点数据较为稀疏,现有成熟的数据异常检测算法存在挖掘较多假性异常点以及遗漏较多真实异常点的缺陷,并不适用于挖掘加油站时序数据。提出一种基于深度学习的异常检测方法识别加油异常车辆,首先通过自动编码器对加油站点采集到的相关数据进行特征提取,然后采用嵌入双向长短期记忆(Bi-LSTM)的Seq2Seq模型对加油行为进行预测,最后通过比较预测值和原始值来定义异常点的阈值。通过在加油数据集以及信用卡欺诈数据集上的实验验证了该方法的有效性,并且相对于现有方法在加油数据集上均方根误差(RMSE)降低了21.1%,在信用卡欺诈数据集上检测异常的准确率提高了1.4%。因此,提出的模型可以有效应用于加油行为异常的车辆检测,从而提高加油站的管理和运营效率。 展开更多
关键词 加油站时序数据 深度学习 Seq2Seq 双向长短期记忆 异常检测
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部