To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
The Qinshui Basin in southeastern Shanxi Province is an important base for coalbed methane exploration and production in China.The methane reservoirs in this area are the Carboniferous and Permian coals and their thic...The Qinshui Basin in southeastern Shanxi Province is an important base for coalbed methane exploration and production in China.The methane reservoirs in this area are the Carboniferous and Permian coals and their thickness are strongly controlled by the depositional environments and the sequence stratigraphic framework.This paper analyzes the high-resolution sequence stratigraphy of the Permo-Carbo-展开更多
This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better bala...This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better balance between the global and local exploitation by the nonlinear update strategy and repulsion operation. Then, the event probability sequence (EPS) which consists of a series of events is computed to describe the unique characteristic of human activities. The anatysis on EPS indicates that it is robust to the changes in viewing direction and contributes to improving the recognition rate. Finally, the effectiveness of the proposed approach is evaluated by data experiments on current popular datasets.展开更多
Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada...Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.展开更多
There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutte...There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.展开更多
以基因、转录、蛋白质等生命组学为主体的生物大数据快速积累和以深度学习为代表的人工智能技术迅猛发展,催生出各种类别的生物大模型(biological large models)。复杂的深度学习架构、巨大的参数量和算力需求、以及海量的预训练数据等...以基因、转录、蛋白质等生命组学为主体的生物大数据快速积累和以深度学习为代表的人工智能技术迅猛发展,催生出各种类别的生物大模型(biological large models)。复杂的深度学习架构、巨大的参数量和算力需求、以及海量的预训练数据等是大模型技术的主要特征。预训练数据类别及参数量一定程度上决定了大模型所具备的能力强弱,而不同的模型架构则可支撑不同类别的下游任务。近两年,围绕DNA/RNA/蛋白质等生物序列与单细胞表达图谱等组学数据分析挖掘、大分子结构预测、新型药物设计和功能机制解析等多种应用场景,涌现了多种通用或专用大模型,展示出其在生物医学研究及转化应用等领域的巨大潜力。本文旨在结合不同类别的生物数据特点和研究应用需求,概述生物数据特征及其用于生物大模型训练的技术方法,并进一步综述现有大模型在生物医学研究及疾病诊疗中的应用进展,为提升生物大模型能力、拓展应用范围提供新的思路。展开更多
文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例...文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。展开更多
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.
文摘The Qinshui Basin in southeastern Shanxi Province is an important base for coalbed methane exploration and production in China.The methane reservoirs in this area are the Carboniferous and Permian coals and their thickness are strongly controlled by the depositional environments and the sequence stratigraphic framework.This paper analyzes the high-resolution sequence stratigraphy of the Permo-Carbo-
基金supported by the National Natural Science Foundation of China(60573159)the Guangdong High Technique Project(201100000514)
文摘This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better balance between the global and local exploitation by the nonlinear update strategy and repulsion operation. Then, the event probability sequence (EPS) which consists of a series of events is computed to describe the unique characteristic of human activities. The anatysis on EPS indicates that it is robust to the changes in viewing direction and contributes to improving the recognition rate. Finally, the effectiveness of the proposed approach is evaluated by data experiments on current popular datasets.
基金supported by the National Natural Science Foundation of China(61801143,61971155)the National Natural Science Foundation of Heilongjiang Province(LH2020F019).
文摘Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.
基金supported by the National Natural Science Foundation of China(61102168)
文摘There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.
文摘以基因、转录、蛋白质等生命组学为主体的生物大数据快速积累和以深度学习为代表的人工智能技术迅猛发展,催生出各种类别的生物大模型(biological large models)。复杂的深度学习架构、巨大的参数量和算力需求、以及海量的预训练数据等是大模型技术的主要特征。预训练数据类别及参数量一定程度上决定了大模型所具备的能力强弱,而不同的模型架构则可支撑不同类别的下游任务。近两年,围绕DNA/RNA/蛋白质等生物序列与单细胞表达图谱等组学数据分析挖掘、大分子结构预测、新型药物设计和功能机制解析等多种应用场景,涌现了多种通用或专用大模型,展示出其在生物医学研究及转化应用等领域的巨大潜力。本文旨在结合不同类别的生物数据特点和研究应用需求,概述生物数据特征及其用于生物大模型训练的技术方法,并进一步综述现有大模型在生物医学研究及疾病诊疗中的应用进展,为提升生物大模型能力、拓展应用范围提供新的思路。
文摘文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。