期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A phenomenological model for plastic flow behavior of rotating band material with a large temperature range 被引量:2
1
作者 Yi-cheng Zhu Jia-wei Fu +1 位作者 Lin-fang Qian Jing-hua Cao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期121-133,共13页
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an... The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models. 展开更多
关键词 Rotating band Plastic flow behavior Large temperature range Phenomenological model
在线阅读 下载PDF
Flow stress behavior and constitutive modeling of 20MnNiMo low carbon alloy 被引量:1
2
作者 王梦寒 王根田 王瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1863-1872,共10页
The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental... The hot deformation behavior of 20 Mn Ni Mo low carbon alloy was investigated by isothermal compression tests over wide ranges of temperature(1223-1523 K) and strain rate(0.01-10 s^(-1)). According to the experimental true stress-true strain data, the constitutive relationships were comparatively studied based on the Arrhenius-type model, Johnson-Cook(JC) model and artificial neural network(ANN), respectively. Furthermore, the predictability of the developed models was evaluated by calculating the correlation coefficient(R) and mean absolute relative error(AARE). The results indicate that the flow stress behavior of 20 Mn NiM o low carbon alloy is significantly influenced by the strain rate and deformation temperature. Compared with the Arrhenius-type model and Johnson-Cook(JC) model, the ANN model is more efficient and has much higher accuracy in describing the flow stress behavior during hot compressing deformation for 20 Mn Ni Mo low carbon alloy. 展开更多
关键词 pressure vessel steel flow stress behavior constitutive model Arrhenius model Johnson-Cook model
在线阅读 下载PDF
Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression 被引量:17
3
作者 ZHANG Tao ZHANG Shao-hang +2 位作者 LI Lei LU Shi-hong GONG Hai 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期2930-2942,共13页
To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy u... To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature.For Arrhenius constitutive equation,each material parameter is set as a constant,which will bring forth large error for predicting flow behavior.In this work,material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy.The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy.The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map.Meanwhile,proper processing parameters to avoid flow instability can be easily acquired in instability map.According to the processing map,optimized processing parameters of 7055 aluminium alloy are temperature of 673?723 K and strain rate of 0.01?0.4 s^?1,during which its efficiency of power dissipation is over 30%.Finite element method(FEM)is used to obtain optimized parameter in hot rolling process on the basis of processing map. 展开更多
关键词 7055 aluminium alloy flow behavior modified constitutive equation processing map optimized parameters
在线阅读 下载PDF
Optimization of process parameters to maximize ultimate tensile strength of friction stir welded dissimilar aluminum alloys using response surface methodology 被引量:6
4
作者 R.Palanivel P.Koshy Mathews N.Murugan 《Journal of Central South University》 SCIE EI CAS 2013年第11期2929-2938,共10页
Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a fa... Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported. 展开更多
关键词 frictions stir welding dissimilar aluminum alloy tool pin profile design of experiments RSM material flow behavior OPTIMIZATION
在线阅读 下载PDF
Hot deformation behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with acicular microstructure 被引量:2
5
作者 刘高峰 张尚洲 陈礼清 《Journal of Central South University》 SCIE EI CAS 2011年第2期296-302,共7页
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at ... The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at 860-1 100 ℃. The true stress-tree strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s^-1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of a colony structure and α dynamic recrystallization in the temperature range of 860-960 ℃ with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%. 展开更多
关键词 titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si hot compression flow behavior MICROSTRUCTURE
在线阅读 下载PDF
Modeling electric vehicle's following behavior and numerical tests 被引量:3
6
作者 杨世春 赵倩 唐铁桥 《Journal of Central South University》 SCIE EI CAS 2014年第11期4378-4385,共8页
The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle&#... The micro modeling for electric vehicle and its solution were investigated. A new car-following model for electric vehicle was proposed based on the existing car-following models. The impacts of the electric vehicle's charging electricity were studied from the numerical perspective. The numerical results show that the electric vehicle's charging electricity will destroy the stability of uniform flow and produce some prominent queues and these traffic phenomena are directly related to the initial headway, the distance between two adjacent charging stations and the number of charging stations. The above results can help traffic engineer to choose the position of charging station and the electric vehicle's driver to adjust his/her driving behavior in the traffic system with charging station. 展开更多
关键词 electric vehicle charging electricity following behavior uniform flow
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部