期刊文献+
共找到272篇文章
< 1 2 14 >
每页显示 20 50 100
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
1
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:17
2
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
UAV safe route planning based on PSO-BAS algorithm 被引量:6
3
作者 ZHANG Honghong GAN Xusheng +1 位作者 LI Shuangfeng CHEN Zhiyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1151-1160,共10页
In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that consider... In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that considers regional risk assessment is proposed.Firstly,the low-altitude airspace is discretized based on rasterization,and then the UAV operating characteristics and environmental characteristics are combined to quantify the risk value in the low-altitude airspace to obtain a 3D risk map.The path risk value is taken as the cost,the particle swarm optimization-beetle antennae search(PSO-BAS)algorithm is used to plan the spatial 3D route,and it effectively reduces the generated path redundancy.Finally,cubic B-spline curve is used to smooth the planned discrete path.A flyable path with continuous curvature and pitch angle is generated.The simulation results show that the generated path can exchange for a path with a lower risk value at a lower path cost.At the same time,the path redundancy is low,and the curvature and pitch angle continuously change.It is a flyable path that meets the UAV performance constraints. 展开更多
关键词 unmanned aerial vehicle(UAV) low-attitude airspace mission planning risk assessment particle swarm optimization beetle antennae search(BAS) cubic B-spline
在线阅读 下载PDF
基于SSAPSO-PID的白胡椒熟化温度控制系统设计与试验
4
作者 俞国燕 张嘉伟 +3 位作者 张园 韦丽娇 赵振华 沈德战 《农业机械学报》 北大核心 2025年第5期589-596,共8页
为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,... 为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,通过控制算法调节蒸汽流量以确保稳定控制。采用开环阶跃响应法建立并拟合了熟化机内温度与时间的数学模型,通过Simulink仿真试验对比了Ziegler-Nichols整定法、临界比例度法、衰减曲线法以及基于麻雀搜索算法的粒子群优化自整定法(SSAPSO)性能。最终确定PID最佳控制参数为比例系数K_(p)=0.8759,积分系数K_(i)=0.02,微分系数K_(d)=4.3255。系统试验结果表明,在8 min的熟化过程中,每隔1 min采集当前熟化温度,由于熟化机与空气直接对流换热,其温度稳定在(99±1.5)℃范围内,熟化温度平均相对误差小于1.2%、变异系数小于1.3%,基本实现了熟化过程中自动化精准高效控温的目的。 展开更多
关键词 白胡椒初加工生产线 熟化温度 粒子群优化算法 麻雀搜索算法 PID控制
在线阅读 下载PDF
基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法
5
作者 徐辉 张顺香 《传感技术学报》 北大核心 2025年第9期1698-1703,共6页
无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群... 无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群算法将定位误差最小问题转化为粒子的全局寻优问题,得到的最优粒子位置即为丢包节点位置;基于邻域搜索策略缩小粒子搜索空间,提高粒子群算法全局寻优能力,实现无线传感网络丢包节点定位。仿真结果表明,该方法的丢包节点定位误报率平均值为0.45%,15个丢包节点的定位中仅有1个节点的定位结果与真实坐标存在较小偏差,邻域搜索策略应用后在第20次迭代后适应度函数值迅速降低至0.2,保证了无线传感网络通信质量。 展开更多
关键词 无线传感网络 丢包节点定位 邻域搜索 粒子群算法 DV-HOP算法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
6
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于改进粒子群算法的6R机械臂时间最优轨迹规划 被引量:3
7
作者 王迈新 闫莉 李雨菲 《制造技术与机床》 北大核心 2025年第2期36-42,共7页
为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在... 为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在求解精度低、易陷入局部最优的缺陷,调整算法中的惯性权重和认知因子,使其随着迭代次数的增加而动态改变数值大小,进而提高算法前期全局搜索能力和后期局部搜索能力;最后,通过3种测试函数测试和仿真实验验证,结果表明,改进后的PSO算法的求解精度提升,可以有效提高机械臂的工作效率。 展开更多
关键词 机械臂 5次B样条曲线 粒子群算法 时间最优轨迹规划 全局搜索能力 局部搜索能力
在线阅读 下载PDF
基于模式搜索的粒子群优化光伏MPPT控制研究 被引量:2
8
作者 李润基 孟丽囡 《现代电子技术》 北大核心 2025年第12期83-88,共6页
光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结... 光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结合的最大功率点跟踪控制技术。该技术是将局部探索能力较强的模式搜索算法和全局开采能力较强的粒子群优化算法进行有效结合,从而提高光伏系统在各种环境条件下的效率。通过粒子群优化算法在可行域内进行全局搜索,同时引入柯西变异机制以扩大粒子搜索范围,增强算法的全局寻优能力;并且融合模式搜索法对搜索到的较优解进行局部寻优,以提高解的精度。仿真结果表明,通过两种算法的结合,所提方法能在更短时间内找到全局最大功率点;与标准粒子群优化算法相比,该混合算法在静态局部阴影、动态局部阴影两种工况下都能快速准确地追踪到最大功率点。 展开更多
关键词 最大功率点追踪 模式搜索技术 粒子群优化算法 柯西变异 局部搜索 全局优化
在线阅读 下载PDF
基于IBAS-IPSO算法的交直流混合微网运行优化
9
作者 潘鹏程 荣梦杰 +1 位作者 香静 徐恒山 《电力系统及其自动化学报》 北大核心 2025年第10期75-84,共10页
针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化... 针对交直流混合微网多目标运行优化模型目标函数具有多样、约束条件复杂及采用粒子群优化算法时存在搜索效率低、易陷入局部最优的问题,提出一种将改进粒子群优化算法和改进天牛须搜索算法融合的双重搜索优化算法。首先,基于粒子群优化算法,引入动态自适应参数改变惯性权重因子和学习因子;然后,为提高粒子群优化算法的收敛精度,对天牛须搜索算法采用动态步长搜索机制;最后,以经济性和环保性为目标,采用本文算法对交直流混合微网运行进行优化。优化结果表明,本文算法与其他算法相比得到的运行成本和环保成本更低,运行时间更短,有一定的工程应用价值。 展开更多
关键词 交直流混合微网 经济性 环保性 改进粒子群优化算法 改进天牛须搜索算法 运行优化
在线阅读 下载PDF
装甲装备使用和维修联合优化方法
10
作者 宋卫星 王刚 武婧婧 《火炮发射与控制学报》 北大核心 2025年第4期122-128,共7页
着眼整体提升装甲装备使用和维修效益,基于摩托小时收支平衡要求、装备预防性维修策略、滚动式循环动用理论,研究分析装备使用和维修之间耦合关系、约束条件,以满足使用需求、摩托小时梯次储备为目标,建立装甲装备的年度使用和维修联合... 着眼整体提升装甲装备使用和维修效益,基于摩托小时收支平衡要求、装备预防性维修策略、滚动式循环动用理论,研究分析装备使用和维修之间耦合关系、约束条件,以满足使用需求、摩托小时梯次储备为目标,建立装甲装备的年度使用和维修联合优化模型,将训练用装需求分配到具体单装并制定维修计划;设计天牛须改进粒子群的混合优化算法,有效提高全局搜索和局部搜索能力,对模型进行优化求解。以某一分队装甲装备技术管理进行案例分析,通过仿真实验验证,设计的模型符合实际,改进的算法计算高效,能够为部队制定装备使用和维修计划提供决策支撑。 展开更多
关键词 装备使用 维修计划 天牛须算法 粒子群算法
在线阅读 下载PDF
基于改进麻雀算法的飞行机械臂运动规划
11
作者 田琛 郑恩辉 《现代电子技术》 北大核心 2025年第22期153-159,共7页
为解决带臂无人机底部机械臂无碰撞运动规划问题,提出一种基于改进麻雀搜索算法(ISSA)的无碰撞运动规划方法。该方法通过引入数学模型和算法策略,确保机械臂能够在复杂的三维环境中有效地移动到目标位置并执行抓取动作。与传统的粒子群... 为解决带臂无人机底部机械臂无碰撞运动规划问题,提出一种基于改进麻雀搜索算法(ISSA)的无碰撞运动规划方法。该方法通过引入数学模型和算法策略,确保机械臂能够在复杂的三维环境中有效地移动到目标位置并执行抓取动作。与传统的粒子群优化(PSO)算法相比,ISSA算法在规划效率和路径优化方面具有卓越的性能。对ISSA算法和PSO算法在关节运动学约束下的最优化轨迹规划性能进行比较分析。ISSA算法的配置参数包括:种群数量设定为30,执行500次迭代,领导个体的比例设为20%,侦查个体的比例为10%,预警阈值为0.7。对于粒子群优化算法,种群数量同样设置为30,迭代次数为1 000次,初始惯性权重为0.8,而终止时的惯性权重调整为0.4。经过ISSA算法处理的机械臂操作时间从9 s降至4.9 s,实现了45%的时间缩减。在此过程中,关节的角速度和角加速度均符合机械臂的运动学限制,同时关节的角位移、角速度和角加速度的曲线变化呈现连续性与平滑性,没有出现剧烈波动,这显著提升了机械臂的运行稳定性。实验结果充分验证了ISSA算法在机械臂时间最优化路径规划方面的高效性。 展开更多
关键词 机械臂 无碰撞运动 路径优化 改进麻雀搜索算法 粒子群优化算法 自适应学习机制
在线阅读 下载PDF
基于天牛须遗传杂交算法的张拉整体结构吸能优化研究
12
作者 冯晓东 沈军 +2 位作者 郑亦汶 赵文雁 刘贺平 《哈尔滨工程大学学报》 北大核心 2025年第7期1379-1387,共9页
为探究影响多自应力模态张拉整体结构吸能性能的因素,制定此类结构合理的吸能优化策略,本文采用天牛须遗传杂交算法分阶段对其开展优化研究。第1阶段中根据张拉整体结构的找形分析理论并匹配构件的单边属性,找寻可使结构成形的初始自应... 为探究影响多自应力模态张拉整体结构吸能性能的因素,制定此类结构合理的吸能优化策略,本文采用天牛须遗传杂交算法分阶段对其开展优化研究。第1阶段中根据张拉整体结构的找形分析理论并匹配构件的单边属性,找寻可使结构成形的初始自应力。第2阶段中以竖向荷载下结构可吸收的最大能量为目标函数,结合拉索松弛及塑性破坏、压杆屈曲和构件碰撞等约束条件,建立约束优化模型。结果表明:对于独立的空间18杆36索张拉整体结构与拼接的复杂张拉整体结构,当联合优化体系的预应力水平和分布时,吸能效果可分别提升约156.88%和50.75%,验证了算法的有效性。 展开更多
关键词 张拉整体结构 找形分析 预应力分布 预应力优化 天牛须搜索算法 共旋坐标法 应变能 吸能性能
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
13
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子群算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
PSO-CGSA算法在移动机器人路径规划中的应用研究 被引量:1
14
作者 马凯凯 王文博 李国玄 《农业装备与车辆工程》 2025年第4期119-122,共4页
针对传统路径规划存在的局部最优解和计算复杂度的问题,采用一种基于粒子群(PSO)和混沌引力搜索(CGSA)的混合优化算法对移动机器人进行路径规划。该方法结合了粒子群优化的全局搜索能力,利用混沌系统的随机性、遍历性和规律性对引力搜... 针对传统路径规划存在的局部最优解和计算复杂度的问题,采用一种基于粒子群(PSO)和混沌引力搜索(CGSA)的混合优化算法对移动机器人进行路径规划。该方法结合了粒子群优化的全局搜索能力,利用混沌系统的随机性、遍历性和规律性对引力搜索算法进行改进,PSO算法利用群体协作的方式,能够迅速搜索到较优解,而CGSA则通过复合搜索策略避免陷入局部最优。仿真实验表明,所提混合算法具有较好的全局寻优性能和较快的收敛性,避障效果良好并具有较强的鲁棒性,适用于复杂场景下的路径规划任务。 展开更多
关键词 路径规划 引力搜索算法 粒子群算法
在线阅读 下载PDF
带忽略工序的多目标批量流混合流水车间调度
15
作者 李浩平 朱成彪 +5 位作者 陈心怡 彭巍 孟荣华 金朱鸿 杜昕毅 蔡浏阳 《计算机集成制造系统》 北大核心 2025年第1期89-101,共13页
针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框... 针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框架,外层进行柔性分批,内层搜索排序及调度方案。针对批量分割、工件批排序、机器分配3个问题,设计基于批量、工序和机器的三段式编码,内层将狼群算法的分级和游走策略引入粒子群算法,设计了一种基于PBX(Position-based Crossover)交叉操作的围攻策略以提高算法的局部搜索及寻优能力。通过仿真实验并与几种启发式算法进行对比及实例验证,说明了调度模型和算法的可行性和优越性。 展开更多
关键词 批量流 混合流水车间调度 忽略工序 改进PSO-GA混合算法 双层搜索框架 柔性分批
在线阅读 下载PDF
基于深度神经网络的7065铝合金厚板应力检测模型 被引量:2
16
作者 杨小平 武修瑞 +5 位作者 郑许 任月路 朱玉涛 何克准 卢祥丰 莫红楼 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3787-3796,共10页
针对工业生产中传统超声应力检测法对铝合金厚板在不同拉伸率和不同温度条件下存在的测量误差的问题,以7065铝合金厚板为实验对象,提出一种在不同拉伸率和不同温度条件下的基于树突神经网络的应力预测模型与传统超声检测法融合的应力检... 针对工业生产中传统超声应力检测法对铝合金厚板在不同拉伸率和不同温度条件下存在的测量误差的问题,以7065铝合金厚板为实验对象,提出一种在不同拉伸率和不同温度条件下的基于树突神经网络的应力预测模型与传统超声检测法融合的应力检测模型,然后使用改进的GSA-GRNN对该应力检测模型进行温度补偿。以南南铝公司生产的7065铝合金厚板为研究对象,使用恒温槽为超声检测提供恒温环境,分别对不同拉伸率、不同温度下的7065铝合金厚板进行超声检测,将声时差、拉伸率作为输入参数,应力作为输出参数,创建一个基于树突神经网络的应力检测模型,然后将应力检测模型的输出作为输入,使用改进的GSA-GRNN建立温度补偿模型对应力检测模型进行温度补偿。研究结果表明:融合了传统超声声时差的检测模型均方根误差为0.84636,相关系数为0.99743,和其他神经网络模型对比,该模型拥有更好的精度;在对该模型进行温度补偿后,模型的应力均方根误差和相关系数分别可以达到0.78848和0.99844,模型的精度得到了进一步的提升。证明基于数据驱动的神经网络融合传统超声检测可以有效降低检测误差,同时省去传统检测方法人工计算应力的时间,提高了检测效率。研究结果可以为基于数据驱动的应力检测模型提供进一步的优化参考。 展开更多
关键词 应力检测 树突神经网络 粒子群算法 万有引力搜索算法 声时差
在线阅读 下载PDF
基于相邻争夺算法的无人机多架次植保作业路径规划 被引量:2
17
作者 沈跃 张凌飞 +2 位作者 沈亚运 储金城 刘慧 《农业工程学报》 EI CAS CSCD 北大核心 2024年第16期44-51,共8页
为了提高植保无人机作业效率,减少无人机作业损耗,该研究针对传统粒子群优化(particle swarm optimization,PSO)算法在规划植保作业路径时容易陷入局部最优,能耗最优方案的搜索能力低下等问题,该研究提出一种基于相邻争夺(adjacent comp... 为了提高植保无人机作业效率,减少无人机作业损耗,该研究针对传统粒子群优化(particle swarm optimization,PSO)算法在规划植保作业路径时容易陷入局部最优,能耗最优方案的搜索能力低下等问题,该研究提出一种基于相邻争夺(adjacent competition, AC)算法的植保无人机作业路径规划算法。首先,对所有粒子设置作业距离范围,以防止单次作业距离过长或过短的极端情况;其次,在作业距离范围内随机分配每个粒子的作业距离,作为搜索的初始值;最后,相邻粒子相互争夺作业距离间接改变各架次作业距离,搜索出最优路径。相邻争夺算法保证了植保无人机作业总距离一定,对搜索方向进行先验且保证特殊点不被遗漏,避免算法陷入局部最优解。使用Matlab软件对420 m×200 m的模拟植保场地进行算法仿真验证,传统粒子群算法常陷入局部最优解,在10次规划中相较于遍历出的能耗最优规划方案增加了16.16%~38.14%的能耗,本文提出的相邻争夺算法规划结果的能耗远低于传统粒子群算法,算法具有更强的搜索能力。使用RflySim仿真平台搭建植保无人机模型和420 m×200 m的作业场地,在虚拟环境下比较传统粒子群算法与相邻争夺算法规划结果的模拟跟踪情况,相邻争夺算法规划结果的能耗相较传统粒子群算法减少了25.15%。420 m×200 m作业场地实际飞行试验中,相邻争夺算法规划结果的能耗相较传统粒子群算法减少了34.48%,更适应多架次植保作业。 展开更多
关键词 植保 无人机 粒子群算法 相邻争夺算法 搜索能力 能耗最优
在线阅读 下载PDF
基于天牛须优化算法的相关向量机边坡稳定性分析 被引量:2
18
作者 张研 唐北昌 孟庆鹏 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期11-17,36,共8页
为了快速、准确地预测边坡稳定性,及时控制边坡危害,提出了一种基于天牛须(beetle antennae search,BAS)优化算法的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。基于RVM模型,建立了边坡影响因素与稳定性的非线性映射... 为了快速、准确地预测边坡稳定性,及时控制边坡危害,提出了一种基于天牛须(beetle antennae search,BAS)优化算法的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。基于RVM模型,建立了边坡影响因素与稳定性的非线性映射关系;采用BAS算法对RVM模型参数进行优化,提出了基于BAS算法的RVM边坡稳定性分析优化模型;并将该模型应用于京新高速公路的边坡稳定性分析。分析结果表明:与实际值相比,基于BAS-RVM模型的最大绝对值相对误差为3.90%;在相同学习样本下,与RVM模型、支持向量机(support vector machine,SVM)模型和径向基函数(radical basis function,RBF)模型的预测值相比,BAS-RVM模型预测结果的可信度和拟合度更好、精度更高,其平均绝对值误差(mean absolute error,EMA)、均方根误差(root mean square error,ERMS)、相对均方误差(relative root mean square error,ERRMS)远低于其他3种模型。 展开更多
关键词 岩土工程 天牛须优化算法(BAS) 相关向量机(RVM) 预测模型 边坡
在线阅读 下载PDF
基于改进引力搜索算法的水轮机调节系统仿真 被引量:2
19
作者 潘虹 杭晨阳 郑源 《排灌机械工程学报》 CSCD 北大核心 2024年第1期8-13,共6页
针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新... 针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新公式中引入学习因子进行改进.其次,应用一种权重系数优化其位置更新公式,提高算法的自适应性.最后,结合相关仿真建模试验,使用所提改进PSOGSA对水轮机调节系统PID参数进行优化调节.仿真结果表明,在5%空载频率扰动下,改进PSOGSA的PID控制器明显优于上述传统算法,所调节的模型系统能在更短时间内趋于稳定,此时的超调量远低于传统算法,表明此改进PSOGSA在后续迭代中具备更高的迭代效率,并且改善了常规算法中易陷入局部最优的问题,从而证明了改进PSOGSA的合理有效性,水轮机调节系统的控制效果在一定程度上得到优化. 展开更多
关键词 水轮机调节系统 改进引力搜索算法 PID参数优化 粒子群算法
在线阅读 下载PDF
基于低碳物流的危化品仓库堆垛布局优化研究 被引量:2
20
作者 李锐 严振宇 +1 位作者 宋金昭 李铭 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第2期61-68,共8页
为保证危化品仓库安全的同时有效减少碳排放并提升经济效益,建立危险指数最小、物料搬运量最小和碳排放成本最小的危化品仓库堆垛布局多目标优化模型,采用改进的粒子群-禁忌搜索混合算法对模型进行求解。该算法在传统粒子群算法的基础... 为保证危化品仓库安全的同时有效减少碳排放并提升经济效益,建立危险指数最小、物料搬运量最小和碳排放成本最小的危化品仓库堆垛布局多目标优化模型,采用改进的粒子群-禁忌搜索混合算法对模型进行求解。该算法在传统粒子群算法的基础上加入多点变异操作,并在粒子群算法得出解的基础上加入禁忌搜索算法,提高算法跳出局部最优解的能力。研究结果表明:利用本文建立的多目标优化模型及改进算法,危险指数、物料搬运量和碳排放成本均有所下降,解集质量较高,从而在保证危化品安全的情况下,有效降低物料搬运量及碳排放成本。研究结果可为危化品企业对仓库内部碳排放量的影响因素和数值计算以及危化品仓库安全性的界定提供参考与借鉴。 展开更多
关键词 碳排放 堆垛布局 多目标优化 粒子群-禁忌搜索算法
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部