In this paper, we propose a scheme for photon echo chirped detection process composed of additional modulation pulses to obtain controllable geometric phase. The geometric phases are observed and measured by a beat si...In this paper, we propose a scheme for photon echo chirped detection process composed of additional modulation pulses to obtain controllable geometric phase. The geometric phases are observed and measured by a beat signal between the photon echo field and the chirped field. The chirped detection model reveals that the period of the beat signal increases as the chirped rate and delay time increase. Additionally, a two-fold relationship between the modulation phase and the echo shift phase is obtained. The numerical simulations accord with the theoretical results obtained by the finite difference time domain(FDTD) method.展开更多
A steady state analysis of the nonclassical features and statistical properties of the cavity radiation of a two- photon coherent beat laser is presented. Results show that the degree of two-mode squeezing, detectable...A steady state analysis of the nonclassical features and statistical properties of the cavity radiation of a two- photon coherent beat laser is presented. Results show that the degree of two-mode squeezing, detectable entanglement and intensity of the cavity radiation can increase with the deviation of the phase fluctuations of the laser employed in preparing the atoms, but decrease with the increasing rate at which the induced coherence superposition decays. Although it is found that varying the phase fluctuations and dephasing can lead to modification in the quantum features and statistical properties of the radiation, it does not alter the similarity in the nature of the degree of entanglement detectable by the criteria following from Duan-Giedke-Cirac Zoller and logarithmic negativity in a perceivable manner. Since the intensity and quantum features can be readily enhanced, this system is expected to be a viable source of a strong robust entangled (squeezed) light under various conditions. Moreover, comparison of the mean number of photon pairs with intensity difference shows that the chance of inciting a two-photon process can be enhanced by changing the rate of dephasing and phase fluctuations.展开更多
We study the colour-locked twin-noisy-field correlation effects in the fifth-order nonlinear susceptibility of ultrafast polarization beats in a cascade four-level system. More importantly, the fifth-order phase-sensi...We study the colour-locked twin-noisy-field correlation effects in the fifth-order nonlinear susceptibility of ultrafast polarization beats in a cascade four-level system. More importantly, the fifth-order phase-sensitive heterodyne detection of ultrafast polarization beats has been exploited. The fifth-order nonlinear optical response can be controlled and modified through the colour-locked correlation of twin noisy fields. Thus, this method with the phase dispersion information is a good way to measure the real and imaginary parts of the fifth-order nonlinear susceptibility.展开更多
The beat frequency in a dual frequency He-Ne laser varies while the resonant cavity length is tuned. As to the laser with two longitudinal modes, the variation amplitude is commonly less than 500 kHz, proven by experi...The beat frequency in a dual frequency He-Ne laser varies while the resonant cavity length is tuned. As to the laser with two longitudinal modes, the variation amplitude is commonly less than 500 kHz, proven by experiments and theories. This study reveals an anomalous variation of the beat frequency when a piece of element is put into the cavity and is aligned with the laser axis. Consequently the variation amplitude couM reach 22 MHz, several dozen times larger than that without the intra-cavity element. This cannot be explained only by laser mode pulling and pushing effects. Some influencing factors are investigated experimentally, including the tilted angle of the element and the distance between its surface and cavity mirror. The qualitative analysis is discussed, which agrees with the experimental results.展开更多
We experimentally study the controllable generation of a beating signal using stored light pulses based on electromagnetically induced transparency(EIT) in a solid medium. The beating signal relies on an asymmetric pr...We experimentally study the controllable generation of a beating signal using stored light pulses based on electromagnetically induced transparency(EIT) in a solid medium. The beating signal relies on an asymmetric procedure of light storage and retrieval. After storing the probe pulse into the spin coherence under the EIT condition, two-color control fields with opposite detunings instead of the initial control field are used to scatter the stored spin coherence. The controllable beating signal is generated due to alternative constructive and destructive interferences in the retrieved signal intensities. The beating of the two-color control fields is mapped into the beating of weak probe fields by using atomic spin coherence. This beating signal will be important in precise atomic spectroscopy and fast quantum limited measurements.展开更多
This paper introduces a new approach for the determination of the source region of beat wave(BW)modulation.This type of modulation is achieved by transmitting high-frequency(HF)continuous waves with a frequency differ...This paper introduces a new approach for the determination of the source region of beat wave(BW)modulation.This type of modulation is achieved by transmitting high-frequency(HF)continuous waves with a frequency difference f,where f is the frequency of modulated ELF/VLF(extremely low frequency/very low frequency)waves from two sub-arrays of a high power HF transmitter.Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency,there exists a controversy on the physical mechanism of BW and its source region.In this paper,the two controversial theories,i.e.,BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously.According to the analysis and simulation results presented in this paper,it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions.Therefore,this characteristic can be utilized as a potential new approach to determine the physical mechanism and source location of BW.展开更多
ZTE Corporation appeared at Expo Comm China2004 with a range of world-leading solutions andapplications stretching across the entiretechnology spectrum-from mobile and NGNrequirements to videoconferencing and
More than any other time of the year,everyone is shopping and nobody wants to overpay because they missed out on a coupon or promo code.Customers have found the easiest way to save is by downloading a smartphone app.B...More than any other time of the year,everyone is shopping and nobody wants to overpay because they missed out on a coupon or promo code.Customers have found the easiest way to save is by downloading a smartphone app.But after the transaction is completed...they hit the delete button.This dance doesn’t play out only during the holidays,though.Savvy consumers do this all year long-leaving brands and retailers to wonder how展开更多
基金Project supported by the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘In this paper, we propose a scheme for photon echo chirped detection process composed of additional modulation pulses to obtain controllable geometric phase. The geometric phases are observed and measured by a beat signal between the photon echo field and the chirped field. The chirped detection model reveals that the period of the beat signal increases as the chirped rate and delay time increase. Additionally, a two-fold relationship between the modulation phase and the echo shift phase is obtained. The numerical simulations accord with the theoretical results obtained by the finite difference time domain(FDTD) method.
文摘A steady state analysis of the nonclassical features and statistical properties of the cavity radiation of a two- photon coherent beat laser is presented. Results show that the degree of two-mode squeezing, detectable entanglement and intensity of the cavity radiation can increase with the deviation of the phase fluctuations of the laser employed in preparing the atoms, but decrease with the increasing rate at which the induced coherence superposition decays. Although it is found that varying the phase fluctuations and dephasing can lead to modification in the quantum features and statistical properties of the radiation, it does not alter the similarity in the nature of the degree of entanglement detectable by the criteria following from Duan-Giedke-Cirac Zoller and logarithmic negativity in a perceivable manner. Since the intensity and quantum features can be readily enhanced, this system is expected to be a viable source of a strong robust entangled (squeezed) light under various conditions. Moreover, comparison of the mean number of photon pairs with intensity difference shows that the chance of inciting a two-photon process can be enhanced by changing the rate of dephasing and phase fluctuations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos60308002and60678005)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No200339)+2 种基金the Foundation for Key Program of Ministry of Education,China(Grant No105156)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No101061)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No20050698017)
文摘We study the colour-locked twin-noisy-field correlation effects in the fifth-order nonlinear susceptibility of ultrafast polarization beats in a cascade four-level system. More importantly, the fifth-order phase-sensitive heterodyne detection of ultrafast polarization beats has been exploited. The fifth-order nonlinear optical response can be controlled and modified through the colour-locked correlation of twin noisy fields. Thus, this method with the phase dispersion information is a good way to measure the real and imaginary parts of the fifth-order nonlinear susceptibility.
基金Supported by State Key Laboratory of Precision Measurement Technology and Instruments,Tsinghua University,under Grant No DL14-02
文摘The beat frequency in a dual frequency He-Ne laser varies while the resonant cavity length is tuned. As to the laser with two longitudinal modes, the variation amplitude is commonly less than 500 kHz, proven by experiments and theories. This study reveals an anomalous variation of the beat frequency when a piece of element is put into the cavity and is aligned with the laser axis. Consequently the variation amplitude couM reach 22 MHz, several dozen times larger than that without the intra-cavity element. This cannot be explained only by laser mode pulling and pushing effects. Some influencing factors are investigated experimentally, including the tilted angle of the element and the distance between its surface and cavity mirror. The qualitative analysis is discussed, which agrees with the experimental results.
基金Project supported by the National Basic Research Program of China (Grant No. 201 ICB921603), the National Natural Science Foundation of China (Grant Nos. 11374126, 10904048, 11074097, 11004079, 11004080, and 11247201), the China Postdoctoral Science Foundation (Grant Nos. 2011M500924 and 2013T60317). and the National Fund for Fosterin~ Talents of Basic Science (Grant No. J I 103202).
文摘We experimentally study the controllable generation of a beating signal using stored light pulses based on electromagnetically induced transparency(EIT) in a solid medium. The beating signal relies on an asymmetric procedure of light storage and retrieval. After storing the probe pulse into the spin coherence under the EIT condition, two-color control fields with opposite detunings instead of the initial control field are used to scatter the stored spin coherence. The controllable beating signal is generated due to alternative constructive and destructive interferences in the retrieved signal intensities. The beating of the two-color control fields is mapped into the beating of weak probe fields by using atomic spin coherence. This beating signal will be important in precise atomic spectroscopy and fast quantum limited measurements.
基金supported by the National Natural Science Foundation of China(Grant No.41804149)China Scholarship Council。
文摘This paper introduces a new approach for the determination of the source region of beat wave(BW)modulation.This type of modulation is achieved by transmitting high-frequency(HF)continuous waves with a frequency difference f,where f is the frequency of modulated ELF/VLF(extremely low frequency/very low frequency)waves from two sub-arrays of a high power HF transmitter.Despite the advantages of BW modulation in terms of generating more stable ELF/VLF signal and high modulation efficiency,there exists a controversy on the physical mechanism of BW and its source region.In this paper,the two controversial theories,i.e.,BW based on D-E region thermal nonlinearity and BW based on F region ponderomotive nonlinearity are examined for cases where each of these two theories exists exclusively or both of them exist simultaneously.According to the analysis and simulation results presented in this paper,it is found that the generated VLF signal amplitude exhibits significant variation as a function of HF frequency in different source regions.Therefore,this characteristic can be utilized as a potential new approach to determine the physical mechanism and source location of BW.
文摘ZTE Corporation appeared at Expo Comm China2004 with a range of world-leading solutions andapplications stretching across the entiretechnology spectrum-from mobile and NGNrequirements to videoconferencing and
文摘More than any other time of the year,everyone is shopping and nobody wants to overpay because they missed out on a coupon or promo code.Customers have found the easiest way to save is by downloading a smartphone app.But after the transaction is completed...they hit the delete button.This dance doesn’t play out only during the holidays,though.Savvy consumers do this all year long-leaving brands and retailers to wonder how