To overcome the mutual coupling (MC) of multiple antennas in millimeter wave (mmWave) communication systems, a novel beam design method with low complexity is proposed in this paper. Firstly, an equivalent channel mod...To overcome the mutual coupling (MC) of multiple antennas in millimeter wave (mmWave) communication systems, a novel beam design method with low complexity is proposed in this paper. Firstly, an equivalent channel model incorporating the effect of MC is analyzed and established, and then an optimal precoding / combiner vector for beamforming is derived. On this basis, by using greedy geometric (GG) algorithm, a novel hybrid beam design method is proposed. Finally, the performance of proposed method is analyzed and compared with other traditional ones. The simulation results show that the proposed method has better suppression of the MC effect as well as lower complexity.展开更多
To overcome imperfection of exhaustive based beam searching scheme in IEEE 802.15.3c and IEEE 802.11 ad and accelerate the beam training process, combined with the fast beam searching algorithm previously proposed, th...To overcome imperfection of exhaustive based beam searching scheme in IEEE 802.15.3c and IEEE 802.11 ad and accelerate the beam training process, combined with the fast beam searching algorithm previously proposed, this paper proposed a beam codebook design scheme for phased array to not only satisfy the fast beam searching algorithm's demand, but also make good use of the advantage of the searching algorithm. The simulation results prove that the proposed scheme not only performs well on flexibility and searching time complexity, but also has high success ratio.展开更多
The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,...The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,a low-complexity user density-based BP design scheme is proposed,where the original problem is decomposed into two subproblems,with the first one to find the sparsest user and the second one to determine the corresponding best BP.In particular,for the second subproblem,a user selection and smallest BP radius algorithm is proposed,where the nearby users are sequentially selected until the constraint of the given BP radius is no longer satisfied.These two subproblems are iteratively solved until all the users are selected.To further reduce the BP radius,a duplicated user removal algorithm is proposed to decrease the number of the users covered by two or more BPs.Aiming at minimizing the number of time slots subject to the no co-channel interference(CCI)constraint and the traffic demand constraint,a low-complexity CCI-free BH design scheme is proposed,where the BPs having difficulty in satisfying the constraints are considered to be illuminated in priory.Simulation results verify the effectiveness of the proposed schemes.展开更多
A compact laser plasma accelerator that is a novel accelerator based on the interaction of ultra-intense laser and plasmas is being built now at Peking University. According to the results of experiments and numerical...A compact laser plasma accelerator that is a novel accelerator based on the interaction of ultra-intense laser and plasmas is being built now at Peking University. According to the results of experiments and numerical simulations, a beam line combining the advantages of quadrupole and analyzing magnets is designed to deliver proton beams with energy ranging from 1 to 44MeV, energy spread within ±5% and 10^6-8 protons per pulse. It turns out that the existence of space charge force of protons can be ignored for the increase of transverse and longitudinal envelopes even in the case of 10^9 protons in one pulse. To cope with the challenge to obtain a uniform distribution of protons at the final experiment target in laser acceleration, we manipulate the envelope beam waist in the Y direction to a proper position and obtain a relatively good distribution uniformity of protons with an energy spread of 0-±5%0.展开更多
A new 973 project was proposed by Peking University and Institute of Modern Physics of Chinese Academy of Sciences recently. The project requires a 50mA, 162.5MHz, cw mode radio frequency quadrupole (FtFO,) to accel...A new 973 project was proposed by Peking University and Institute of Modern Physics of Chinese Academy of Sciences recently. The project requires a 50mA, 162.5MHz, cw mode radio frequency quadrupole (FtFO,) to accelerate the D+ to 1 MeV. In a high-current linear accelerator, the strong space charge effect causes the growth of envelope and emittanee along with heavy beam losses. In the beam dynamics design of this RFQ, beam envelope mismatching is discussed and a matching dynamics method is proposed to minimize the envelope and emittance growth. The influence of limiting current on the beam transmission is discussed and used in the optimization of transverse and longitudinal parameters. After the optimization, the beam transmission efficiency reaches higher than 98%.展开更多
The Peking University neutron imaging facility (PKUNIFTY), an RFQ-based neutron source, aims at developing industrial applications. During the past 3 y operation, some problems have appeared, such as RF sparking for t...The Peking University neutron imaging facility (PKUNIFTY), an RFQ-based neutron source, aims at developing industrial applications. During the past 3 y operation, some problems have appeared, such as RF sparking for the RFQ high power operation, full power level instability of RF transmitter, and the misalignment of RFQ electrodes assembling and deformation. The PKUNIFTY upgrade endeavors to adopt a modest inter-voltage beam dynamics design. The new beam dynamics design of 201.5MHz RFQ of PKUNIFTY, which accelerates 35mA of D+ from 50 keV to 2.0MeV at 10% duty factor, is performed. The averaged D+ beam will be about 3 mA. The source will deliver a fast neutron yield of 2.5x10(12) n/s via the deuteron-beryllium reaction, which is about 10 times higher than the current status.展开更多
This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe sup...This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.展开更多
In this paper,short pulse radiation in Shanghai Synchrotron Radiation Facility(SSRF)is generated by the low momentum compaction factor(α_C)optics,and three kinds of the low-α_C optics are found,with the very lowα_C...In this paper,short pulse radiation in Shanghai Synchrotron Radiation Facility(SSRF)is generated by the low momentum compaction factor(α_C)optics,and three kinds of the low-α_C optics are found,with the very lowα_C being adopted by reducing dispersion in the straight section to negative value in the SSRF.Energy acceptance is selected as objective functions in nonlinear optimization rather than the second orderα_C or other nonlinear driving terms.The optimal result is improved step-by-step by randomly setting harmonic sextupole strengths.Two optics modes,i.e.low positiveα_C and low negativeα_C,are analyzed.In order to get a large energy acceptance and only one stable point in longitudinal phase space,the low negativeα_C optics is taken as an operation mode for the short pulse radiation in the SSRF.展开更多
The reliability and safety of the pneumatic ducts are essential for flight safety.A beam element model of the duct system is developed and the factors that impact the stress performance of the duct system are investig...The reliability and safety of the pneumatic ducts are essential for flight safety.A beam element model of the duct system is developed and the factors that impact the stress performance of the duct system are investigated,such as stress check standards,flight acceleration,internal temperature and internal pressure.The results show that the stress synthetic method as the stress check standard can obtain the more safety design results.The maximum stress of straight pipe is affected significantly by the acceleration in a plane perpendicular to straight pipe,while the maximum stress of bend pipe is greatly affected by the acceleration in the direction perpendicular to plane of the bend pipe.Meanwhile,internal pressure has little effect on the maximum stress of bend pipe and straight pipe.Temperature has little effect on the maximum stress of bend pipe while has a big impact on the maximum stress of straight pipe.展开更多
We propose the construction of a compact linac as the injector of a cancer therapy facility at the Institute of Modern Physics(IMP) of the Chinese Academy of Sciences(CAS). Based on a traditional setup, a new compact ...We propose the construction of a compact linac as the injector of a cancer therapy facility at the Institute of Modern Physics(IMP) of the Chinese Academy of Sciences(CAS). Based on a traditional setup, a new compact fast-bunching design is first introduced to optimize the 600 keV/u RFQ with a 0.05 pm A ^(12)C^(4+) beam. This shortens the RFQ structure length from the standard design value of272–230 cm while effectively regulating the particle loss and emittance growth. In addition, a detailed error analysis was performed after the optimization process. The error sources cover input beam parameters errors, machining errors and alignment errors. The simulation results show that the beam loss and emittance growth of the RFQ are acceptable and within typical ranges of error.展开更多
基金supported by Aeronautical Science Foundation of China (2017ZC52021)the Major Program of National Natural Science Foundation of China (61827801)
文摘To overcome the mutual coupling (MC) of multiple antennas in millimeter wave (mmWave) communication systems, a novel beam design method with low complexity is proposed in this paper. Firstly, an equivalent channel model incorporating the effect of MC is analyzed and established, and then an optimal precoding / combiner vector for beamforming is derived. On this basis, by using greedy geometric (GG) algorithm, a novel hybrid beam design method is proposed. Finally, the performance of proposed method is analyzed and compared with other traditional ones. The simulation results show that the proposed method has better suppression of the MC effect as well as lower complexity.
基金supported by National Natural Science Foundation of China under Grants No.61171104
文摘To overcome imperfection of exhaustive based beam searching scheme in IEEE 802.15.3c and IEEE 802.11 ad and accelerate the beam training process, combined with the fast beam searching algorithm previously proposed, this paper proposed a beam codebook design scheme for phased array to not only satisfy the fast beam searching algorithm's demand, but also make good use of the advantage of the searching algorithm. The simulation results prove that the proposed scheme not only performs well on flexibility and searching time complexity, but also has high success ratio.
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404。
文摘The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,a low-complexity user density-based BP design scheme is proposed,where the original problem is decomposed into two subproblems,with the first one to find the sparsest user and the second one to determine the corresponding best BP.In particular,for the second subproblem,a user selection and smallest BP radius algorithm is proposed,where the nearby users are sequentially selected until the constraint of the given BP radius is no longer satisfied.These two subproblems are iteratively solved until all the users are selected.To further reduce the BP radius,a duplicated user removal algorithm is proposed to decrease the number of the users covered by two or more BPs.Aiming at minimizing the number of time slots subject to the no co-channel interference(CCI)constraint and the traffic demand constraint,a low-complexity CCI-free BH design scheme is proposed,where the BPs having difficulty in satisfying the constraints are considered to be illuminated in priory.Simulation results verify the effectiveness of the proposed schemes.
基金Supported by the National Natural Science Foundation of China under Grant No 11575011the National Grand Instrument Project under Grant No 2012YQ030142
文摘A compact laser plasma accelerator that is a novel accelerator based on the interaction of ultra-intense laser and plasmas is being built now at Peking University. According to the results of experiments and numerical simulations, a beam line combining the advantages of quadrupole and analyzing magnets is designed to deliver proton beams with energy ranging from 1 to 44MeV, energy spread within ±5% and 10^6-8 protons per pulse. It turns out that the existence of space charge force of protons can be ignored for the increase of transverse and longitudinal envelopes even in the case of 10^9 protons in one pulse. To cope with the challenge to obtain a uniform distribution of protons at the final experiment target in laser acceleration, we manipulate the envelope beam waist in the Y direction to a proper position and obtain a relatively good distribution uniformity of protons with an energy spread of 0-±5%0.
基金Supported by the National Basic Research Program of China under Grant No 2014CB845503
文摘A new 973 project was proposed by Peking University and Institute of Modern Physics of Chinese Academy of Sciences recently. The project requires a 50mA, 162.5MHz, cw mode radio frequency quadrupole (FtFO,) to accelerate the D+ to 1 MeV. In a high-current linear accelerator, the strong space charge effect causes the growth of envelope and emittanee along with heavy beam losses. In the beam dynamics design of this RFQ, beam envelope mismatching is discussed and a matching dynamics method is proposed to minimize the envelope and emittance growth. The influence of limiting current on the beam transmission is discussed and used in the optimization of transverse and longitudinal parameters. After the optimization, the beam transmission efficiency reaches higher than 98%.
基金Supported by the National Basic Research Program of China under Grant No 2014CB845503
文摘The Peking University neutron imaging facility (PKUNIFTY), an RFQ-based neutron source, aims at developing industrial applications. During the past 3 y operation, some problems have appeared, such as RF sparking for the RFQ high power operation, full power level instability of RF transmitter, and the misalignment of RFQ electrodes assembling and deformation. The PKUNIFTY upgrade endeavors to adopt a modest inter-voltage beam dynamics design. The new beam dynamics design of 201.5MHz RFQ of PKUNIFTY, which accelerates 35mA of D+ from 50 keV to 2.0MeV at 10% duty factor, is performed. The averaged D+ beam will be about 3 mA. The source will deliver a fast neutron yield of 2.5x10(12) n/s via the deuteron-beryllium reaction, which is about 10 times higher than the current status.
文摘This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.
文摘In this paper,short pulse radiation in Shanghai Synchrotron Radiation Facility(SSRF)is generated by the low momentum compaction factor(α_C)optics,and three kinds of the low-α_C optics are found,with the very lowα_C being adopted by reducing dispersion in the straight section to negative value in the SSRF.Energy acceptance is selected as objective functions in nonlinear optimization rather than the second orderα_C or other nonlinear driving terms.The optimal result is improved step-by-step by randomly setting harmonic sextupole strengths.Two optics modes,i.e.low positiveα_C and low negativeα_C,are analyzed.In order to get a large energy acceptance and only one stable point in longitudinal phase space,the low negativeα_C optics is taken as an operation mode for the short pulse radiation in the SSRF.
文摘The reliability and safety of the pneumatic ducts are essential for flight safety.A beam element model of the duct system is developed and the factors that impact the stress performance of the duct system are investigated,such as stress check standards,flight acceleration,internal temperature and internal pressure.The results show that the stress synthetic method as the stress check standard can obtain the more safety design results.The maximum stress of straight pipe is affected significantly by the acceleration in a plane perpendicular to straight pipe,while the maximum stress of bend pipe is greatly affected by the acceleration in the direction perpendicular to plane of the bend pipe.Meanwhile,internal pressure has little effect on the maximum stress of bend pipe and straight pipe.Temperature has little effect on the maximum stress of bend pipe while has a big impact on the maximum stress of straight pipe.
基金supported by the National Natural Science Foundation of China(No.11375243)the Guangdong Innovative and Entrepreneurial Research Team Program(No.2016ZT06G373)
文摘We propose the construction of a compact linac as the injector of a cancer therapy facility at the Institute of Modern Physics(IMP) of the Chinese Academy of Sciences(CAS). Based on a traditional setup, a new compact fast-bunching design is first introduced to optimize the 600 keV/u RFQ with a 0.05 pm A ^(12)C^(4+) beam. This shortens the RFQ structure length from the standard design value of272–230 cm while effectively regulating the particle loss and emittance growth. In addition, a detailed error analysis was performed after the optimization process. The error sources cover input beam parameters errors, machining errors and alignment errors. The simulation results show that the beam loss and emittance growth of the RFQ are acceptable and within typical ranges of error.