The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consol...The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consolidation tests is cumbersome and time-consuming.Based on experimental results from a series of index tests,this study presents a hybrid method that combines the extreme gradient boosting(XGBoost)model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils.The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network(ANN)and support vector machine(SVM)models.In addition to the lowest prediction error,the proposed XGBoost-based method enhances the interpretability by feature importance analysis,which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils.This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects.展开更多
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f...Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.展开更多
Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can ...Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.展开更多
In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one compr...In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one comprehensive objective function,which facilitates an end-to-end way for optimization.Then,to increase the efficiency of surrogate construction,we propose the MF simulation-based BO(MFBO),of which the surrogate model using MF simulation is introduced based on the theory of multi-output Gaussian process.To further use the low-fidelity(LF)simulation data,the modified MFBO(M-MFBO)is subsequently proposed.By picking out the most potential points from the LF simulation data and re-simulating them in a high-fidelity(HF)way,the M-MFBO has a possibility to obtain a better result with negligible overhead compared to the MFBO.Finally,two antennas are used to testify the proposed algorithms.It shows that the HF simulation-based BO(HFBO)outperforms the traditional algorithms,the MFBO performs more effectively than the HFBO,and sometimes a superior optimization result can be achieved by reusing the LF simulation data.展开更多
The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firep...The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.展开更多
Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thick...Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting.展开更多
Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an impr...Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an improved Four-Dimensional Variation source term inversion algorithm with observation error regularization(OER-4DVAR STI model)is formed.Firstly,by constructing the inversion process and basic model of OER-4DVAR STI model,its basic principle and logical structure are studied.Secondly,the observation error regularization factor estimation method based on Bayesian optimization is proposed,and the error factor is separated and optimized by two parameters:error statistical time and deviation degree.Finally,the scientific,feasible and advanced nature of the OER-4DVAR STI model are verified by numerical simulation and tracer test data.The experimental results show that OER-4DVAR STI model can better reverse calculate the hazard source term information under the conditions of high atmospheric stability and flat underlying surface.Compared with the previous inversion algorithm,the source intensity estimation accuracy of OER-4DVAR STI model is improved by about 46.97%,and the source location estimation accuracy is improved by about 26.72%.展开更多
基金Project(202206370130)supported by the China Scholarship CouncilProject(2023ZZTS0034)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consolidation tests is cumbersome and time-consuming.Based on experimental results from a series of index tests,this study presents a hybrid method that combines the extreme gradient boosting(XGBoost)model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils.The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network(ANN)and support vector machine(SVM)models.In addition to the lowest prediction error,the proposed XGBoost-based method enhances the interpretability by feature importance analysis,which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils.This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects.
基金Project(52374153)supported by the National Natural Science Foundation of ChinaProject(2023zzts0726)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF.
基金This project was supported by the Fund of College Doctor Degree (20020699009)
文摘Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best.
基金supported by the National Key Research and Development Program of China(2019YFB1803205)the Key Research and Development Project of Shaanxi Province(2019GY-007)+1 种基金the National Natural Science Foundation of China(61801369)the Fundamental R esearch Funds for the Central Universities(XZD012021012)。
文摘In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one comprehensive objective function,which facilitates an end-to-end way for optimization.Then,to increase the efficiency of surrogate construction,we propose the MF simulation-based BO(MFBO),of which the surrogate model using MF simulation is introduced based on the theory of multi-output Gaussian process.To further use the low-fidelity(LF)simulation data,the modified MFBO(M-MFBO)is subsequently proposed.By picking out the most potential points from the LF simulation data and re-simulating them in a high-fidelity(HF)way,the M-MFBO has a possibility to obtain a better result with negligible overhead compared to the MFBO.Finally,two antennas are used to testify the proposed algorithms.It shows that the HF simulation-based BO(HFBO)outperforms the traditional algorithms,the MFBO performs more effectively than the HFBO,and sometimes a superior optimization result can be achieved by reusing the LF simulation data.
基金supported by the National Natural Science Foundation of China (10377014)the Innovation Foundation of Northwestern Polytechnical university (2007KJ01027)
文摘The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.
基金Project(52204117)supported by the National Natural Science Foundation of ChinaProject(2022JJ40601)supported by the Natural Science Foundation of Hunan Province,China。
文摘Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting.
基金Ministry of Science and Technology of the People’s Republic of China for its support and guidance(Grant No.2018YFC0214100)。
文摘Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an improved Four-Dimensional Variation source term inversion algorithm with observation error regularization(OER-4DVAR STI model)is formed.Firstly,by constructing the inversion process and basic model of OER-4DVAR STI model,its basic principle and logical structure are studied.Secondly,the observation error regularization factor estimation method based on Bayesian optimization is proposed,and the error factor is separated and optimized by two parameters:error statistical time and deviation degree.Finally,the scientific,feasible and advanced nature of the OER-4DVAR STI model are verified by numerical simulation and tracer test data.The experimental results show that OER-4DVAR STI model can better reverse calculate the hazard source term information under the conditions of high atmospheric stability and flat underlying surface.Compared with the previous inversion algorithm,the source intensity estimation accuracy of OER-4DVAR STI model is improved by about 46.97%,and the source location estimation accuracy is improved by about 26.72%.